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Abstract

We first modify conventional one-dimensional perfectly elastoplastic constitutive model into a smooth one by
shortening the switch-on time (or switch-on strain or switch-on stress) through a smooth factor p. This modification can
be realized by assigning a piecewise constant yield stress o}’ = [08 + (p — Doorsgn(é)]/p, whose p is proved to be in the
range of 1 < p<2. When p = 1 we recover to the original model. By employing the same strategy to one-dimensional
kinematic hardening model as well as to one-dimensional mixed-hardening model, we found that the newly modified
models, besides provide a more smooth transition from elasticity to plasticity, are able to describe strain hardening
effect, the Bauschinger effect, cyclic hardening effect, strain ratcheting behavior and even more complicated cyclic
behavior. Then, we extend the same idea to modify a multi-dimensional mixed-hardening model. Instead of the con-
ventional zero-measure yield surface, the new model allows plasticity to happen in some non-zero-measure yield volume
in stress space, which is the main reason to cause smooth elastoplastic stress—strain behavior; moreover, the original
yield surface has to be viewed mathematically as a limiting surface of the new model. Because the new model shares the
same governing equations as the original model has, it is thermodynamically consistent as the original model is. From
computational aspect, since stress points are no longer confined on the yield surface, the new model is more easily to
numerically implement than the original model, and the conventional numerical design to match the consistency
condition, e.g. the radial return method, is now no more needed for the new model.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Drucker (1988) has classified elastoplastic constitutive models into two types: conventional and un-
conventional. The conventional model is based on the assumption that the interior of yield surface is an
elastic domain, wherein plastic deformation is not permitted no matter what stress changes occur. Con-
versely, the unconventional model under some conditions may allow plasticity to happen inside the yield
surface. In order to differentiate these two situations Hashiguchi (1989) called the plastic state in which a
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stress point lies on the conventional yield surface a “normal-yield state” and the plastic state within the
yield surface a “‘subyield state™.

The most frequently used conventional model is perfectly elastoplastic system (see, e.g., Liu, 2000) which
allows plastic slip taking place at a constant value of applied stress and then leads to the tensile stress—strain
curve being a horizontal line follows an inclined line. This is of course a very crude approximation to the
elastoplastic stress—strain behavior of most metals. To enhance the simulation of experimentally observed
hardening behavior in many metals strain-hardening was then proposed, which asserts that the yield surface
expands with the amount of plastic flow. An alternative simple phenomenological mechanism, kinematic
hardening, provides another means of representing hardening behavior of metals under cyclic loadings.
This basic hardening law is credited to Prager (1956) with further improvements by Ziegler (1959). Then, a
combination of kinematic hardening and isotropic hardening, called mixed-hardening, has been pointed
out by Hodge (1957). For this case the yield surface can expand and translate simultaneously in stress
space, but still remains its original shape. Within this type hardening mechanism, the different degree of
experimentally observed Bauschinger effect can be simulated by suitably adjusting these two hardening
components.

These conventional models have been used extensively in many engineering applications due to their
analytical tractability (see, e.g., Liu, 1997, 2000, 2002). However, they are often too simple to give ac-
ceptable approximation to real systems. For example, Fig. 1 shows the cyclic stress—strain curves of the
perfectly elastoplastic system, of the bilinear elastoplastic system and of the mixed-hardening elastoplastic
system, under the same input of piecewise increasing strain amplitudes. Obviously, all these curves are
“over square” near to the elastoplastic transition points, and none of them can meet the basic requirements
for cyclic plasticity models (see, e.g., Drucker and Palgen, 1981; Dafalias, 1984). Indeed, as pointed out by
many researchers, e.g. Hashiguchi (1993), that the conventional model has serious drawbacks as follows: It
is unable to describe the smooth transition from elastic phase to plastic phase, which is observed experi-
mentally for most metals, and instead, an abrupt transition is predicted. It cannot describe the accumu-
lation of plastic deformation such as mechanical ratcheting phenomenon under a constant stress amplitude.

For the conventional theory is far from being able to predict experimental results on real metals,
especially under cyclic loading conditions, some modifications have to be made to improve the conventional
theory. The unconventional elastoplastic constitutive models, which exclude the above-mentioned as-
sumption in the conventional theory, have been studied, and various models have been proposed since
1960s. For example, an extension of the kinematic hardening model so as to describe even a plastic de-
formation proceeding in the transition from elastic phase to the normal-yield phase has been attempted by
Mréz (1967, 1969) and Iwan (1967) independently. Their extended model, subyield surfaces encircled by a
normal-yield surface, has been called a “multi-surface model”. Thereafter, based on them, a simplified
model employing a normal-yield surface and only one subyield surface enclosing a purely elastic domain
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Fig. 1. The hysteretical loops for (a) perfectly elastoplastic model, (b) bilinear elastoplastic model and (c¢) mixed-hardening elastoplastic
model, are all over square near to the elastoplastic transition points.
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has been formulated by Dafalias and Popov (1975, 1976), Krieg (1975), Mroz et al. (1979) and Hashiguchi
(1988), which has been called a “two surface model”. In the plural surfaces theory, we also mention the
infinite surface model developed by Mréz et al. (1981), and the subloading surface model developed by
Hashiguchi (1989). In terms of mechanical requirements for cyclic plasticity, the condition of continuity in
the large and in the small and the Masing effect, Hashiguchi (1993) has examined those models in detail.
Chaboche and Rousselier (1983) showed equivalence between the nonlinear kinematic hardening rule of
Armstrong and Frederick (1966) and a simple two surface model based on bounding and yield surfaces.
Such similarity study may facilitate us to understand and to further develop material models. A detailed
discussion concerning multi-surface model, two surface model and the nonlinear kinematic hardening
model was given by Chaboche (1986). We just merely and briefly sketch a few progress about cyclic
plasticity models which may be to some extent related to our work in the present paper. For further dis-
cussion concerning the development of cyclic plasticity before 1990 the interested readers are referred to the
paper by Ohno (1990) and the references therein.

In this paper we first concern with one-dimensional models that can be used to describe nonlinear cy-
clically hysteretical stress—strain behavior through a critical modification. Then, we extend the basic idea to
modify a multi-dimensional mixed-hardening model. Instead of zero-measure yield surface for conventional
model, the new model obtained by a critical modification of the conventional model allows plasticity to
happen in a non-zero-measure yield volume in stress space, which makes the new model exhibiting smooth
elastoplastic transition and is able to simulate some cyclic stress—strain behavior. In Drucker’s sense we may
categorize the new models developed here into unconventional type. However, the new models even allow
plasticity to happen inside the yield surface, but they do not need any inner surfaces to delineate the current
stress point in plastic state. More importantly, because the new models add only one additional material
constant of smoothing factor on their formulations, they are simpler in theoretical and also in practical
than other unconventional models.

There have several models that can produce smooth elastoplastic transition, for example, the multi-layer
model (Besseling, 1958), the distributed-element model (Iwan, 1966), the Bouc—Wen model (Wen, 1976), the
Masing model (see, e.g., Chiang, 1999), the multi-back stress model (Chaboche, 1991), and some nonlinear
kinematic hardening models and generalized plasticity models as discussed by Auricchio and Taylor (1995).
However, we approach this issue by utilizing a very different, simple yet effective method to modify the
original non-smooth elastoplastic model to a smooth one. As will be confident, the proposed method makes
the new model revealing drastically different behavior and having largely improved simulation capability
than the original model.

2. Modification of one-dimensional perfectly elastoplastic model

2.1. The original model

The following postulations are usually employed to depict the stress—strain relation for one-dimensional
perfectly elastoplastic model (see, e.g., Hong and Liu, 1997; Liu, 2000):

e=¢€+¢€°, (1)
6 =E¢, (2)
jo = USép, (3)

o] <oy, )
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i=0, (5)

lo|d = a)i. (6)

The two constants, namely the Young modulus E and the tensile yield stress a are assumed to be positive.
Here 8 &, &P and ¢ are, respectively, the strain, elastic strain, plastic strain and stress; 4 is a scalar evaluated
by A(t) = [;|&(&)|dé.

Combmmg Egs. (1)-(3), we have

E .
O-y

which together with the complementary trios (4)-(6) enable the model to possess the elastic—plastic
switching criteria as follows:

-1

A=—0t>0 if [o] =0 and &> 0, (8)
Jy

A=0 if |o] <o) or ¢i<0. (9)

According to the complementary trios (4)—(6), there are just two phases: (i) 4 > 0 and lo] = a and (i) A =0
and |g| < a From the criteria (8) and (9) it is clear that (i) corresponds to the plastic phase whlle (i1) to the
elastic phave

Theorem 1. For the one-dimensional perfectly elastoplastic model (1)—(6) the switch-on strain is given by

a’sgn(é) — a,
8011 — ‘Soff +$, (10)

where sgn is the signum function.

Proof. For an admissible initial stress oo := o(for) specified at a time ¢ = fo, ! we first integrate Eq. (2)
from z, to ¢ with its & replaced by & due to ¢ = 0 in Eq. (1), giving

O':O'Off—|-E(8—80ff) (11)
where oy := &(tor). Then, inserting it into the yield condition ¢* = (¢ 2)2 generates the following equation
for &:

E2(8 — Eoff)z + 2E0'0ff(8 — Soff) + O'(z)ff — (0'8)2 =0. (12)

Solving this equation for ¢ we thus show that the switch-on strain ¢, is given by Eq. (10). O
2.2. A critical modification

Now we propose a new model modified from the above perfectly elastoplastic model, which provides a
quite significant improvement in describing stress—strain behavior to avoid some major defects of the
original model. In order to alleviate the non-smoothness of the stress—strain curves for perfectly elasto-
plastic model as shown in Fig. 1(a) we propose, instead of the constant yield stress a(y), a modified piecewise-
constant yield stress given as follows:

! torr may be an initial time in the elastic phase or the latest time for the occurrence of unloading.
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0 + -1 o o
o (p—1o fngn(ﬁ)_ (13)
Y p

The above o, is the stress at the latest unloading point; initially we may let g, = 0. The smoothing factor
p > 11is a material constant determined by experimental test. When p = 1, oy = 08 and we recover to the
original non-smooth model.

Now we prove the following two important results.

Theorem 2. If'1 < p <2, the switch-on strain for the newly modified one-dimensional perfectly elastoplastic
model is given by

a%sgn (&) — ooy
on — &ol > — . 14
€ Eoff + oE (14)

Proof. At first we need p to be in the range of 1 < p < 2; otherwise, for some extremal cases of g, very near
to iag we may obtain negative ay from Eq. (13). For admissible initial stress * . specified at time ¢ = 7.,
substituting the elastic equation (11) into the new yield condition ¢ = (a;’)2 generates the following
equation for &:

E2(8 — Soff)z + ZEO'Off(S — Soff) + O-?)ff — (O'm)z =0. (15)
Substituting Eq. (13) for o7 into the above equation and solving it for ¢ we obtain the result in Eq. (14). [

The specification of the new oy to be a subyield stress is equivalent to shorten the original switching-on
strain given by Eq. (10) to that given by Eq. (14) with a factor p > 1.
Theorem 3. The modified yield stress o) satisfies the following inequality
0<o) <o (16)

Proof. Because of 1 < p <2 and |ao| < o) the above inequality follows from Eq. (13) directly. O

We should note that ¢’ cannot be a constant for all time; otherwise, Eq. (15) may has no solution for

some cases. The strategy employed in the new model amounts to modify the J in Eq. (7) subjected to the
new switching criteria:

C 1

= —50i>0 if 60> [o| >0 and &> 0, (17)
y

A=0 if |o] <o) or ¢i<0. (18)

It admits plasticity occurring in a finite stress interval of o} < |a| < o). The original yield points |o| = o) can
be viewed mathematically as limiting points, and |a| > a 1s not permltted in the new model. As the original
model is, the new model is thermodynamically con51stent since 4 > 0 in the plastic phase and 4 =0in the
elastic phase as shown in Egs. (17) and (18).

2 Instead of |o] < 02 for the original model, for the new model we call ¢ admissible if |0 < a(y).
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2.3. Smooth stress—strain curves

From Egs. (7) and (17) we have

d:Eé(l—%) (19)

in the plastic phase. Because we allow plasticity to happen when ¢ lies in the range of (0’8)2 >0l > (a'y”)z,
the above right-hand side is not equal to zero, which is different from that for the original model, of which
the above right-hand side is zero because plasticity is permitted only in the zero-measure two points set of
o= iUS- Let us further note four important points: (a) For the modified model we do not care the con-
sistency condition, because yield surface has been replaced by a new concept of yield volume whose measure
is not zero in stress space; however, 4 for the new model is same as that for the original perfectly elasto-
plastic model which is obtained by the consistency condition. (b) From Eq. (19) follows two fixed points
o= o'(y’ and ¢ = —a‘y’. They are the attracting points of the new model dynamics. (c) Hence, for the new
model it is obvious that extensive plastic loading overwhelms and wipes out memory many, if not all, of the
past effect. No matter how many cycles the modeled material has experienced, its stress—strain curve will
approach to one of the two bounding lines, ¢ = ia‘y), if plastic deformation goes on extensively in one of the
two directions. (d) The new model allows stress control in the range of |g| < 63; this is however impossible
for the original perfectly elastoplastic model.

If we view ¢ as a function of ¢, Eq. (19) can be written as

do a’
a—E(l - (63)2) (20)

Integrating the above equation with some algebraic manipulations gives

oty 1006+ ) exp { U 1 o(r) — o0

0
Yy

08 o) + 63} exp { 2E[e(t (Ts(ﬁ)] } + 08 —o(t)
y

: (21)

where # can be a switched-on time. In the new model we do allow |a(#)| < o) but not allow |a(#;)| = a7; for

the former case it is obvious that |a(¢)| < o) for all # > ¢, but for the latter case it is obvious that |a(¢)| = o}
for all ¢t > ¢, which thus leads to a plastic plateau and a non-smooth elastoplastic transition. Under
monotonically straining it is obvious that |a(r)| approaches to o, and hence the points of |g| = g} are
limiting points.

In order to get a clear picture about the stress—strain relations for the new model, we apply Egs. (11) and
(21) to calculate the stresses in elastic phase and in plastic phase, respectively, by letting ¢ to be the control
input, and we use Eq. (14) to determine the switching-on strain. The Young modulus £ = 20000 MPa was
taken, and the modified initial yield stress o} = ag /p =200 MPa was fixed in all calculations. Fig. 2 dis-
plays the monotonic stress—strain curves for different p’s and og’s as shown in the figure, where we select
the two constants of p and 0'2 so as to make the five curves have the same initial yield point (o,¢) =
(200 MPa, 0.01). Obviously, stress runs in the range of (ag /P, 08) after initially yielding, * and each stress—
strain curve tends to its limiting value ag for large strain. It can be seen that more larger p leads to more
strain hardening and also more smooth transition from elasticity to plasticity, and when p = 1 we recover

to the relation for the perfectly elastoplastic model.

3 For the new model, the smoothing factor p has a natural mechanical meaning if we view a(y) /p as initial yield stress and 02 as
limiting strength.
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Fig. 2. The monotonic stress—strain curves for different smooth factors and yield stresses.

If we view ¢? as a function of A, Eq. (19), after multiplying by ¢ on both sides and inserting Eq. (17) for
oé, becomes

de* 2E , 0
a +6—80 =2Eo,. (22)

Integrating the above equation gives

= (@) + [ (o)) = (a})’] [1 — exp <_ifx>] (23)

y

where at 4 = 0 we let 6> = (o} )2. The above result is quite significant, which says that for the new model in
each plastic phase the modeled material can harden from an initial yield strength ¢}’ to a saturated strength
02 with a strain-hardening rate 2E/ (72. Very interestingly, the new model possesses a natural hardening
mechanism as specified by Eq. (23), which is different from the standard saturation type hardening law as to
be given in Eq. (59). This is however impossible for the original model, of which the hardening term dis-
appears.

In Fig. 3(a)—(d) we give some cyclic stress—strain curves for different p’s and ag’s as listed in Table 1,
under the input of piecewise increasing amplitudes of strain with each strain amplitude being applied five
cycles. They show that the modified model is able to reveal smooth elastoplastic transition, strain hard-
ening, the Bauschinger effect, as well as a little cyclic hardening effect in small strain range. However, for
this simple modified model the hysteretical loops are stabilized rapidly to a single loop within one cycle for
each strain amplitude. In order to simulate cyclic hardening in a more feasible way we need to supplement
mixed-hardening effect into the model as that to be investigated in Section 4. In Fig. 3(e) the time histories
of the modified yield stresses oy’s for different p’s are plotted.

About p and o' there have at least three important points deserving to note: (a) For smaller p there has
smaller stress range that the material can harden, and such that ¢ varies in a very narrow range. For
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Fig. 3. The hysteretical loops for the modified perfectly elastoplastic model with different smooth factors and yield stresses. The
modification renders the new model having more smooth elastoplastic transition. The last one plot shows the time histories of the

modified yield stresses.

Table 1

Material constants used in Figs. 1, 3, 5, 6
E (MPa) U‘y‘ (MPa) o E, (MPa) oy (MPa) n
20000 200 1 Fig. 1(a) 2000 Fig. 1(b) 300 5 Fig. 1(c)
20000 240 1.2 Fig. 3(a) 2000 Fig. 5(a) 340 5 Fig. 6(a)
20000 300 1.5 Fig. 3(b) 2000 Fig. 5(b) 400 5 Fig. 6(b)
20000 340 1.7 Fig. 3(c) 2000 Fig. 5(c) 440 5 Fig. 6(c)
20000 400 2 Fig. 3(d) 2000 Fig. 5(d) 500 5 Fig. 6(d)

example, after the first cycle in Fig. 3(e) for the case p = 1.2, o} is almost tended to a constant value. But in
the first cycle o)’ as can be seen experiences a large jump from 200 MPa to about 160 MPa, because the
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material rapidly hardens in the first cycle, and after that the cyclic hardening almost stops. (b) More larger
p gives more smaller oy, and hence more smooth elastoplastic transition. (c¢) The time histories of o' as
shown in Fig. 3(e) tell us that o)’ decreases to certain small value when strain amplitude increases. For
example for the case p = 2, gy’ almost tends to zero value at the last few cycles, which renders stress—strain
curve almost being C' smooth at the elastoplastic transition points.

In this occasion let us give one comment on the basic mechanical requirement of continuity in the large,
i.e., C' smooth stress—strain curve, that Hashiguchi (1993) proposed to assess the smoothness of elasto-
plastic constitutive models. This requirement needs the material model responding plastically under a
loading process even starting immediately from a zero stress state. That is, elastic domain is shrinking to a
zero stress point. This is however not true for most metals being loaded from their annealed state. As
remarked by Hashiguchi (1993) only very few models that can meet this stringent requirement. In personal
view, it is a mathematical requirement rather than a mechanical requirement for modeling material be-
havior.

In order to display the strain ratcheting effect that the new model can simulate, we may conversely
employ ¢ as the control input and calculate ¢ by the following equation

oy . oy +a(0)lloy — o(t;)]
=¢(t) +=LIn=2 Y 24
0 = el) 3 M o e o) 4
in the plastic phase, and by Eq. (11) in the elastic phase. The switching-on stress is determined by
Osgn
:gp<> (25)

In Fig. 4(a)-(h) with stress being input we show some cyclic stress—strain curves for different initial pre-
stresses a(z;)’s but with 02 =400 MPa and p = 2 being kept constant for all cases. They show that the
modified model is able to reveal ratcheting behavior, and we can see that more larger mean value of stress
leads to more larger strain ratcheting, and that zero mean stress induces no strain ratcheting. These results
are at least qualitatively consistent with the experimental observations for most metals.

3. Modification of one-dimensional bilinear elastoplastic model

Although the above modified model can describe a little Bauschinger effect, in order to enhance the
simulation capability it needs the model able to describe kinematic hardening more and more. In many
metals subjected to cyclic loading, it is experimentally observed that the center of yield surface experiences a
motion in the direction of plastic flow. This hardening behavior is known as the Bauschinger effect. Dafalias
(1984) has experimentally observed that the reverse yielding initiates before even the tensile stress changes
to compressive for grade 60 steel.

A simple phenomenological description that captures the Bauschinger effect is constructed by intro-
ducing an additional internal variable called back stress in the formulation, which defines the location of
the center of the yield surface. Then, Egs. (1)—(6) are extended to the following one-dimensional bilinear
elastoplastic model (see, e.g., Liu, 1997, 2000; Hong and Liu, 1999):

b= 4, (26)
oc=0c"+a°, (27)

¢ = E&*, (28)
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Fig. 4. Under constant amplitude stress control the strain ratcheting behavior for the modified perfectly elastoplastic model is shown
for different mean stresses. More larger mean stress renders more larger strain ratcheting.
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From Egs. (26)-(28), (30) it follows that

|

EO’+Efb(O'70')—8, (34)
l(.a+ .b)+i .b_ . (35)
g6t +a Eba =,

6% + Epé? = E(€ — ¢P). (36)

By integrating the above three equations from ¢ to ¢ we immediately obtain

a(t) = o(t;) + Blo* (1) — o (4:)] + PEv[e(t) — &(t1)], (37)
a"(t) = o°(1;) + ofa* (6) — 0" (0)] + BEvle(r) — e(t)], (38)
(1) =et) + g E, [0% () = a*(0)] + Ble(t) — &(t)], (39)

where the parameter [ is defined by

= (40)

and

wi=1-p (41)

- E+E,
is the modulus ratio, because aE = fE} is the post-yield modulus.
Formulae (37)—(39) indicate that stress, back stress and plastic strain are linear functions of strain, active
stress and some related initial values &°(¢,), &(t,), 6%(¢), a°(t;) and o(t;), the latter three of which are however
not linearly independent, since they are related by o(#;) = o°(¢;) + ¢°(#;). Hence, if we know ¢%(¢), the other
three quantities o(¢), ¢°(¢) and &P(¢) can be calculated immediately.
Inserting the flow rule (29) for éP into Eq. (36) we find that the active stress is governed by

E+Ey ;
&+ % lo* = Eg, (42)
O-y

where /1 is subjected to the following switching criteria:

i:ﬁoaawo if 6) > |0*| >0y and % >0, (43)
Gy
A=0 if|¢*| <oy or ¢":<0. (44)

The above modified yield stress, analogous to the one in Eq. (13), is now given as follows:
. 02 + (p — 1)o%;sgn(é)
oy = ) ,

where ¢ is the active stress at the latest unloading point.
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Similarly, we can prove the following result.

Theorem 4. If 1 < p <2, the switch-on strain for the newly modified one-dimensional bilinear elastoplastic
model is given by

ay5gn(é) — ol

" (46)

€on = Eoff +
From Egs. (42) and (43) we obtain

deo? (o)
=FE[1- . 47
de E( (00)2> (47)

y

Integrating the above equation gives
(1) [6%(4;) + 52] exp { 2E[e(r) —e(t)] } + o (t) — o

= : (48)
% [o*() + o) exp { el

where ¢ can be chosen to be the switched-on time. In the new model we allow |¢*(#;)| < ¢} and not allow
|0*(4;)| = a; for the former case it is obvious that |¢°(¢)| < o) for all ¢ > 1, and for the latter case it is
obvious that |¢*(¢)| = o) for all ¢ > ¢, which thus leads to a non-smooth elastoplastic transition. Under
monotonically straining it is obvious that |¢*(¢)| approaches to ¢}, and hence the points of |¢*| = o) are
limiting points of ¢?.

Now, we apply Egs. (48) and (37)-(39) to calculate the responses in plastic phase by letting ¢ to be the
control input, and use Eq. (46) to determine the switching-on strain. In Fig. 5(a)—(d) we give some cyclic
stress—strain curves for different p’s and ag’s and fixed E|, as listed in Table 1. They show that the modified
model is able to reveal smooth elastoplastic transition, strain hardening and strong Bauschinger effect,
which shows that reverse yielding initiating before even the tensile stress changes to compressive. The
hysteretical loops are stabilized very soon within one cycle for each strain amplitude. However, the ex-
perimental observations for most metals do not support this type behavior. Therefore, we need to consider
a more reasonable model of mixed-hardening and its modification as follows.

4. Modification of one-dimensional mixed-hardening elastoplastic model

The third model that we attempt to modify is one-dimensional mixed-hardening elastoplastic model,
which allows the yield surface to expand and to translate simultaneously in stress space, and is obtained
from Egs. (26)—(33) by letting the yield stress o, depend on A, that is, oy = gy (4).

With this in mind, from Egs. (26)—(30) it follows that

E+Ey .

6 + Ao = E&. (49)

Oy
The product of ¢* with the above equation is
E+FE,

Me®)’ = Ed%, (50)
Oy

oe +
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Fig. 5. The hysteretical loops for the modified bilinear elastoplastic model with different smooth factors and yield stresses. The
modification renders the new model having more smooth elastoplastic transition.

which, due to (6*)” = o, at yielding point and g, = g,(2), furnishes the following switching criteria:
A:m68>0 1f|0'|:GyandO'8>0, (51)

i=0 if 6" < gy or 6*¢<0. (52)
In above o) denotes the differentiation of oy = ay(4) with respect to /.

Eq. (49) together with the switching criteria (51) and (52) are the governing equations for the conven-
tional one-dimensional mixed-hardening elastoplastic model. Now we subject A to the new switching cri-
teria:

E

| ag if > g a
A —(E+Eb+a’y)ay68>0 if oy > |0 > 0] and ¢"¢>0, (53)
A=0 if [o*]| <oy or ¢'¢<0, (54)
where
or = ay(Zorr) + (p — 1)oggsgn(é) (55)
p

and Ao and o2 are, respectively, the values of 4 and ¢* at the latest unloading point.

Eq. (49) together with the new switching criteria (53) and (54) are the governing equations for the
modified one-dimensional mixed-hardening elastoplastic model, which includes a smoothing factor in the
formulation. Substituting Eq. (53) for A into Eq. (49) gives a nonlinear equation for ¢*,
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daa:E(l_(w%_bW), (56)

de E+ Ey + 0})o?

However, because of the dependence of o, on 4, the above equation alone insuffices to determine ¢*, which
must be supplemented with Eq. (53) of the following form:
di E

de (E+Ey+0)o, (57)

Here we view strain as input, and the strain to switch-on plasticity is given below.

Theorem 5. If 1 < p <2, the switch-on strain for the newly modified one-dimensional mixed-hardening elas-
toplastic model is given by

oy (Jofr)sgn(é) — Ggff. (58)

€on = &off + oE

Unlike to Eq. (20) for modified one-dimensional perfectly elastoplastic model, and Eq. (47) for modified
one-dimensional bilinear elastoplastic model, Eq. (56) cannot be integrated explicitly with a closed-form
solution, because (a'“l)2 is not equal to 05 for the modified one-dimensional mixed-hardening elastoplastic
model and because the material function ¢y depends on 4. This is also true for the linear isotropic hardening
case, i.e., oy =constant. Egs. (56) and (57) are more complicated than the corresponding equations for the
original model, which may be solved exactly for the linear hardening case because of (o’a)2 = oi. The
coupled equations (56) and (57) are then numerically integrated by the group-preserving scheme developed
by Liu (2001), and at the same time stress, back stress and plastic strain are calculated, respectively, by Egs.
(37)—(39). In Fig. 6(a)—-(d) we give some cyclic stress—strain curves for fixed » and different a(y)’s and oy’s
within the following isotropic hardening function

ay(4) = O'S, + (o} — ag)[l — exp(—ni)], (59)

where 02 and oy are, respectively, the initial yield stress and the ultimate yield stress, and » is the strain-
hardening rate. The material constants used are listed in Table 1. Examining the responses as shown in Fig.
6(a)—(d) for symmetric cyclic loading under piecewise increasing strain amplitudes reveals again that the
modified model can smooth stress—strain curves, and strain hardening, cyclic hardening, as well as the
Bauschinger effect are evident. For each strain amplitude the peak stress increases with the number of cycles
stabilizing at a level which increases with the subsequent strain amplitude for the next set of cycling. This
indicates an increase of the elastic region due to isotropic hardening. In Fig. 6(e) the time histories of the
modified yield stresses oy'’s for different p’s are plotted. More larger p gives more smaller ¢}, which explains
the reason that more larger p gives more smooth elastoplastic transition. However, for the case p = 1.2,
which is not larger enough to depress the value of oy, the cyclic stress—strain curve as shown in Fig. 6(a) is
not so smooth as that for the other three cases.

5. Multi-dimensional mixed-hardening elastoplastic model and its modification

In this section we attempt to extend the above results to the multi-dimensional models. Because the
perfectly elastoplastic model and the bilinear elastoplastic model are both special cases of the mixed-
hardening elastoplastic model, we skip directly to the multi-dimensional mixed-hardening elastoplastic
model, which can be re-formulated as the following postulations (see, e.g., Hong and Liu, 1993; Caddemi,
1994; Auricchio and Beirao da Veiga, 2003):
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Fig. 6. The hysteretical loops for the modified mixed-hardening elastoplastic model with different p’s, ag’s and oy’s. The modification
renders the new model having more smooth elastoplastic transition. The last one plot shows the time histories of the modified yield

stresses.
€ =¢ +¢é°
S =8, + Sp,
§ = 2Ge°,
s, = 27yeP,
$, = 2k'é,

Isall < V21,
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=0, (66)
8a]l4 = V21,4 (67)
Here the norm of a tensor is defined as ||s,|| := /5, - s, and a dot between two same order tensors denotes

their Euclidean inner product.

In the above e, €°, e, s, s, and s, are, respectively, the deviatoric tensors of strain, elastic strain, plastic
strain, stress, active stress and back stress, all symmetric and traceless, whereas A is a scalar. It is also
postulated that with the above differential model there is a time instant designated as ¢ = ¢y, called the zero-
value time, before and at which the material is in the zero-value state in the sense that the relevant values e,
e, eP, s, s,, s, and A are all zero. Here, the shear modulus G > 0 is assumed to be a material constant, and
the shear yield strength 7, > 0 and the shear kinematic modulus &’ are functions of the equivalent shear
plastic strain A given by

o= [ Vae ()] de. (68)

The material is further assumed to be weakly stable, Hong and Liu (1993):

T+ kK +G>0. (69)
Here a prime attached to a material function denotes the derivative with respect to its argument, for ex-
ample, 7 (1) := dry(4)/dA.

5.1. Switch of plastic irreversibility

From Egs. (60)-(64) it follows that
K+ G

Ty

Sa + s, = 2Ge. (70)

Taking the inner product of Eq. (70) with s,, we get

Gs,-é= (7, + K + G)ryd if [|s.]| = v21,, (71)
which, since G > 0, 7y > 0 and r’y +k + G >0, gives

if ||s,]| = V2, then {s,-&>0 <= i> 0}. (72)
Thus,

{|lsa]] = V21, and s, - & > 0} = 4 > 0. (73)

On the other hand, if 1 > 0, Eq. (67) assures ||s,|| = V217, which together with Eq. (72) asserts that
4> 0= {||s,]| = V27, and s, - & > 0}. (74)

Therefore, from Eqs. (73) and (74) we conclude that the yield condition [|s,|| = v/27, and the straining
condition s, - € > 0 are sufficient and necessary for plastic irreversibility 4 > 0. Considering this and the
inequality (66), we thus reveal the following criteria of plastic irreversibility:

(ty+K'+G)y

i laes >0 if Isdll = v2z, and s, -é> 0, o
0 if ||s.]] < V21, or s,-e<0.
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In the ON phase of the switch, 4 > 0, the mechanism of plastic irreversibility is working and the material
exhibits elastoplastic behavior, while in the OFF phase of the switch, 4 = 0, the material behavior is re-
versible and elastic. According to the complementary trios (65)—(67), there are just two phases: (i) 4> 0and
lIsa]| = ﬁry, and (ii)) A=0 and |[s,]| < \/iry. From the switch (75) it is clear that (i) corresponds to
the plastic phase (or the on phase or the elastoplastic phase) while (ii) to the elastic phase (or the off
phase).

5.2. Constant strain rate

Now we consider a rectilinear strain path with
e=c, (76)

where ¢ is a given second-order constant deviatoric tensor.

Theorem 6. For the model (60)—(67) subjected to the strain path (76), the switch-on time is given by

vVB? —-44C — B
ton — loff +—a (77)
24
where
A:=4G|c|?, B:=4Gs.(toerr) ¢, C:=|saltom)||’ — 222 (Jorr) (78)

and Jo denotes the value of A at the latest unloading time t.;. Then, from the time moment t,, on we have

M) >0 V1> ton. (79)

Proof. For the given strain path (76) and the admissible initial active stress s, () specified at time ¢ = t,
we first integrate Eq. (70) with 4 = 0 from z,¢ to 7, giving

Sa(l) = Sa(toff) + 2G(l‘ — loff)c. (80)
Then, substituting it into the yield condition ||s,(¢)|* = 273 (ofr) generates the following equation for ¢
A(l*toff)2+B(l‘7toff)+C:O. (81)

Because of 4 > 0 and C <0, we get B> —44C > 0 and hence ¢ > t.. Taking the inner product of Eq. (80)
with 4G(t — t.r)c gives
4G(1 — togr)Sa(t) - € = 4GS, (o) - €(t — togr) + 8G||e|* (1 = tosr)” = B(t — togr) + 24(1 — 1o )’
= A(t — toff)z — C,
where Eqgs. (78) and (81) were used. We consider only the case of ¢ > ¢, which together with 4 > 0 and
C <0 leads to
S.(t) - ¢ > 0. (82)

From Egs. (81) and (82) and the switch-on criterion (75) we thus conclude that the switch-on time ¢, is
given by Eq. (77), and A(¢) > 0 at this time moment ¢ = ¢,,.
In terms of the integrating factor

Y(A) :=exp [/OA % di |, (83)
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the integral of Eq. (70) can be obtained as follows:

i) = 75 | TG00 + [ 207 Geee) o] (34)
Substitution of the above equation for s, into Eq. (71) and rearrangement yield

20) = Y08, 0) 600 + [ 26V((0)600) -6 de. (85)
where

Z0) = /0)‘ Ty(/ll)Y(il)[T'y(g) + K (4) + G 4, (36)

is a newly defined irreversibility parameter. Under the strain path (76), from Eq. (85) with its ¢ replaced by
ton We have
t
20) = Y (2t ))sultn) - €+ 2Gel [ Y((&))de. (87)
fon
Since Y > 0 from Eq. (83) and s,(fn) - € > 0 as just proved in Eq. (82), the inequality Z(t) YV t > ty, is
verified. The inequality A(¢) > 0V ¢ > ¢,, follows directly by Egs. (86) and (69). O

The switching criteria in Eq. (75) and the inequality (79) indicate that for a rectilinear strain path once
yielding occurs the model switches-on to the plastic phase and responds always plastically in the subsequent
time up to the termination of the strain path.

Before employing the same idea to modify the above conventional mixed-hardening model, we use the
group-preserving scheme developed by Liu (2003) to calculate the model responses under a piecewise
proportional two-dimensional strain path as shown in Fig. 7(a). The material is linear hardening having
Ty = Ty0 + 7:;/1 with 7,0 = 200 MPa and r’y = 100 MPa, and also with G = 20000 MPa and &’ = 500 MPa.
Fig. 7 illustrates the response to an input of a cyclic two-triangular path in two dimensions strain space
(e11, €12), the first cycle of which consists of six pieces from point 0 to point 6. The consecutive cycle repeats
in the strain space the locus of the first cycle. The results shown with dashed lines include the stress path in
Fig. 7(b), and hysteresis loops in Fig. 7(c) and (d). The response graph of the stress path in Fig. 7(b) as can
be seen is very different from the input strain path in Fig. 7(a). One main feature is that the strain path is
closed, but the corresponding stress response has an open path. The other feature is that the strain path is
composed of straight lines, but the corresponding stress response has straight-line paths in the off phase but
destorted arc paths in the on phase due to plasticity and the accompanied hardening effect. As shown in
Fig. 7(c) and (d) the original model gives non-smooth stress—strain curves.

5.3. A new model modified from the multi-dimensional mixed-hardening model

In order to overcome the above shortcoming of non-smoothness of the stress—strain curves and adapt the
mixed-hardening model to a new one which can simulate cyclic behavior we propose, instead of the con-
tinuous shear yield strength function t,, a modified piecewise-constant shear yield strength given as follows:

p*B>—[(p— 1)B + VB2 — 44C)’
4p24 ’

where 4, B and C were defined in Eq. (78). The above ¢, is the latest unloading (switching-off) time; we may

let ¢or = O initially. When p = 1, Ty = 7y (Zofr), and we recover to the original non-smooth model. Hereafter

we call the model with the above modification the new model, and which without considering the above
modification the original model. Now we prove the following important result.

2(T;n)2 = ”Sa(toff)Hz -

(88)
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Fig. 7. The responses to an input of a cyclic two-triangular strain path in (a), and displaying the results, respectively, for the original
model and for new model in (b) the corresponding stress paths, in (c) the cyclic axial stress—axial strain curves and in (d) the cyclic shear
stress—shear strain curves.

Theorem 7. If 1 < p <2, then under the strain path (76) the switch-on time of the new model is given by

VB> —44C — B

ton = tofr + 2PA (89)
and then
M) >0 V1> ity (90)

Proof. For the strain path given by Eq. (76) and the admissible initial active stress s, (¢orr) specified at time
t = to, * substituting the elastic constitutive equation (80) into the new yield condition ||s,(¢)|* = 2(1;”)2
generates the following equation for ¢:

A(Z - toff)z + B(l — loff> + ||Sa(t0ff)||2 — 2(‘[;’)2 =0. (91)

* The admissible stress for the new model is ||s || < v2ty. If [|sa]| = v27y at a time moment then under the loading condition the
active stress point will always lie on the yield surface. Mathematically speaking, the yield surface is an invariant surface for the new
model, and sometimes we call it a limiting surface because it is an attracting surface of all active stress orbits under proportional
loading conditions.
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The inner product of Eq. (80) with 4G (¢ — t,r)c gives

4G(1 — togr)Sa(t) - € = 4GS, (tofr) - €(t — tor) + 8G2|e|* (1 = torr)* = B(t — togr) + 24(t — tor)”
p*B2 — [(p — 1)B + VB> — 44C)’

= At — tor)” — 2
(t ~ tor) e 92)
where Egs. (91), (78) and (88) were used. Solving Eq. (91) for ¢ and using Eq. (88) again we obtain
VB> —44C — B
t=tor +—s— . (93)
2pA
Substituting it into the right-hand side of Eq. (92) gives
—1)B+ VB> —4AC) + [VB® —44C — B)’ — p*B*
4Gt — ta)salt) - ¢ = L ZDEF I+ iy (94)
4p%4
To proceed we consider two cases: p =2 and 1 < p < 2. If p =2, Eq. (94) reduces to
8G(t — tor)sa(t) - ¢ = —C. (95)
It is obvious that ¢ = #,i implies C = 0. So we consider the case of ¢ > ¢, and C < 0, and hence
sa(?) - ¢ > 0. (96)

The above inequality together with Eq. (93) asserts that such ¢ is a switch-on time, and thus Eq. (89) holds.
For the case 1 < p < 2, in order to prove the above inequality (96) we need further to consider two
possible conditions, namely B > 0 and B < 0. From Eq. (94) it follows that

[VB* —44C + (p — 1)B|[VB? — 44C — B|
2p%4 '

Under the condition B >0, Eq. (96) follows directly because of p>1, 4 >0, C <0, and hence
VB? —44C — B > 0. Now, we turn to the condition B < 0 which, due to 1 < p < 2, leads to

VB> —44C+ (p—1)B > VB*—44C + B

and hence

4G(t — togr)sa(f) - € = (97)

-2C
02

4G(1 — togr)sa() - € > (98)
by Eq. (97). So, under the conditions of ¢ > #,; and C < 0, Eq. (96) follows directly. From Egs. (93) and
(96) we thus conclude that the switch-on time #,, of the new model is given by Eq. (89). The proof of
inequality (90) is the same as that given in the proof of Theorem 6. [

The above results show that for a rectilinear strain path once yielding occurs the new model responds
always in the plastic phase up to the termination of the input. The specification of 7y to be the new shear
yield strength is equivalent to shorten the original switching-on time given by Eq. (77) to that given by Eq.
(89) with a factor p > 1. The smoothing factor p cannot be larger than two because it may violate the
inequality (90) under some initial conditions. Furthermore, we can prove the following result.

Theorem 8. The modified shear yield strength ty' in the new model satisfies the following inequality
’E;l < ’Ey(/loff). (99)



C.-S. Liu | International Journal of Solids and Structures 40 (2003) 2121-2145 2141

Proof. Upon letting ¢t = ¢,, in Egs. (81) and (91), and noting that the ¢,, — . in the second equation is the
ton — toge 1n the first equation dividing by p when comparing Eq. (77) with Eq. (89), we obtain

Aton — tor)” + Bfon — torr) + lIsa(torr) > — 275 (2orr) = 0, (100)

%(ton )’ +§<ton — tor) + [salto)II” — 2222 = 0. (101)
From Egs. (65) and (100) it follows that

Alton — tor)” + B(fon — tor) = 0. (102)
Then, subtracting Eq. (101) from Eq. (100) we get

222 (2or) — 2(77) = Alton — torr)’ (1 - %) + B(ton — torr) (1 - %) (103)

Because of p > 1 and 4 > 0, from the above equation it follows that

22 (Joir) — 2(7)° > <1 - ;) [A(ton — torr)” + Blfon — torr)]- (104)
Due to p > 1 and Eq. (102) we prove inequality (99). O
5.4. Characterization of new model behavior

The method employed in the new model amounts to modify the A in Eq. (70) by subjecting to the new
switching criteria:
Gs, - €

/i = m > O lf \/jfy(;boff) > ||Sa|| > \/if;n and Sa - e > 07 (105)
y

A=0 if [s.]| < V2! or s,-€<0. (106)

In the ON phase of the switch, 4 > 0, the mechanism of plastic irreversibility is working and the material
modeled by the new model exhibits elastoplastic behavior, while in the OFF phase of the switch, A = 0, the
material behavior is reversible and elastic. We note again that as the original model is, the new model is
thermodynamically consistent since 4> 0 in the plastic phase and A = 0 in the elastic phase.

Inserting the two A’s in Egs. (105) and (106) into Eq. (70) the governing equations for active stress of the
new model are found to be

G(K + G)s, -

. _2ge_ G+ G, @
T Co gy e

sa if V2t (Jorr) > [Isall > V27 and s, - € > 0, (107)

$.=2Gé if |s.]| < V27! or's, - €<0. (108)

In the new model we really depress the original shear yield stress level 7, to a lower level tj/, and when
IIsa]| = \/fr;” we call the material yielding. > It allows plasticity occurring in a finite stress volume in
V2t > [|sa]| = \/Ery as schematically shown in Fig. 8. Mathematically speaking, e.g. Hale (1969), a set #

5 The yielding defined here is different from that for the original model. For distinct we may call it subyielding as that suggested by
Hashiguchi (1989).
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Fig. 8. Allowable active stress regions for (a) original mixed-hardening elastoplastic model and (b) newly modified mixed-hardening
elastoplastic model.

in R¥? ® R is said to be an invariant set of Eqs. (107) and (105) if, for any point p € # the solution curve
through p belongs to & for ¢ in (—oo,00). Let us define the set by F := {(s,, 4)||sa|| — fry( 1) = 0}.
Taking the time derivative of ||s,|| — \/iry( 1) and feeding Eq. (107) for §, and Eq. (105) for A it is obvious
that # = 0. It means that the original yield surface ||s,|| — v2t, = 0 is an invariant surface for the new
model. However, we sometimes call it a /imiting surface because it is an attracting set of all orbits of (s,, 1)
under proportional loading conditions. © )

Because the original model and the new model share the same governing equation (70) and the same 4,
Eq. (87) with its #,,’s replaced by the new ¢, defined in Eq. (89) is still applicable to the new model when it
subjects to the strain path (76). Especially, for the new model the active stress formula is also given by Eq.
(84); however, the initial active stress s, (#,,) does not necessarily locate on the yield surface. Indeed, for the
new model we only allow [|s,(%n)|| = \/fr’y” < V21 (Aotr)-

In cyclic plasticity theory, various phenomena of material behavior have been characterized in order to
facilitate our description of stress—strain curves under different loading conditions. A theoretical model is
performing well if it is able to reproduce all these phenomena of cyclic plasticity. According to the new
models we have demonstrated some observed phenomena and effects through one-dimensional illustrative
calculation examples. Now we calculate the responses of the above modified multi-dimensional mixed-
hardening model under the input given in Fig. 7(a) again. The smoothing factor used in this calculation is
p = 2. The results shown with solid lines include the stress path in Fig. 7(b), and hysteresis loops in Fig. 7(c)
and (d). As shown the new model gives smooth stress—strain curves.

For the general strain path we need to calculate the switching-on time in order to provide a similar
method to smooth the model responses. Substituting the elastic equation

Sa(f) = Sa(toff) + 2G[e(t) — e(loff)] (109)

into the yield condition |[s,(r)||* = 273 (ofr) generates usually a nonlinear equation for ¢ as follows:

(o) I+ 4Gsq (torr) - [e(1) — e(torr)] + 4G7[le(r) — e(torr)||* = 27 (orr) = 0. (110)

% The limiting surface was understood here from a mathematical sense as just explored. However, in plural surfaces theory of
unconventional type they may be bestowed some different or same names, such as bounding surface (Dafalias and Popov, 1975),
limiting surface (Krieg, 1975), normal-yield surface (Hashiguchi, 1989), etc. Moreover, they may be setting from a geometric sense
rather than from a mathematical sense.
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Fig. 9. The responses to a non-proportional circular strain path are displaying, respectively, for the original model and for new model
in (a) the cyclic axial stress—axial strain curves, in (b) the cyclic shear stress—shear strain curves and in (c) the corresponding stress paths.

Solve this equation numerically and denote the solution by #3 . Then, we replace it by a new switching-on
time

©° —t
fon = off+°“T°“. (111)

After this time the new model is in the plastic phase, and the numerical scheme ’ is used to calculate the
response until an unloading occurs. The modified shear yield stress can be obtained by inserting the ., in
Eq. (111) into Eq. (110) to replace their #’s and replacing ri(/loff) by (7:;")2, ie.,

2(2)? = [I8a(tor) > + 4GS torr) - [€(fon) — €(torr)] + 4G7|l€(fon) — e(torr) ||’ (112)

y

This equation is however an implicit form for 7, and not likes the one in Eq. (88) for rectilinear strain path.
We should note that the modified shear yield stress is path dependent.

Below we give a numerical example for the new model under a non-proportional two-dimensional strain
path given by e = ey cos(2nz/100) and ej; = ey = egsin(27nz/100) with ¢y = 0.008, and the other com-
ponents being zero. The corresponding hysteretical loops and stress path are shown in Fig. 9 (a), (b) and (¢),
respectively. It can be seen that the new model gives a quite smooth stress path than that given by the
original model.

7 Because for the new model stress points are not confined on the yield surface, any effective numerical scheme for ODEs, e.g. the
Runge-Kutta method, can be used to calculate the responses through integrating Eqs. (105) and (107) in the plastic phase. However,
for the original model we have to require the numerical scheme to match the consistency condition, e.g. the radial return method, such
that the stress points are guaranteed to locate on the yield surface.
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6. Conclusions

In this paper we have proposed simple but critical modifications of the one-dimensional perfectly elas-
toplastic model, of the one-dimensional bilinear elastoplastic model as well as of the one-dimensional
mixed-hardening elastoplastic model, by merely including a smooth factor p, which is proved to be
I < p<2. When p = 1 the original models are recovered. The main idea is to replace the yield surface by a
new concept of yield volume through the specification of a piecewise constant yield stress. Hence, plasticity
is allowed to happen in a non zero-measure domain in stress space. In doing so, we have a degree of
freedom to adjust the smoothness of stress—strain curve. Numerical tests were conducted by subjecting the
modified models to monotonic loadings and cyclic loadings. The major phenomenological cyclic behavior
of metals can be simulated, which include strain hardening, cyclic hardening, the Bauschinger effect, as well
as strain ratcheting. Comparing the stress—strain curves obtained from the original model and from the new
model confirms that the proposed modification not only makes a significant improvement of the qualitative
behavior but also increases the model simulation capability. Finally, we extended the modification to the
multi-dimensional mixed-hardening elastoplastic model, and demonstrated that the original yield surface
has to be viewed mathematically as a limiting surface of the new model. For computing the new model has
the advantage that it need not to match the consistency condition and is more easily to numerically im-
plement than the original model, since stress points are not confined on the yield surface, and hence the
conventional numerical design to match the consistency condition is now no more needed.
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