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Abstract

We first modify conventional one-dimensional perfectly elastoplastic constitutive model into a smooth one by

shortening the switch-on time (or switch-on strain or switch-on stress) through a smooth factor q. This modification can

be realized by assigning a piecewise constant yield stress rm
y ¼ ½r0

y þ ðq � 1Þroff sgnð _eeÞ�=q, whose q is proved to be in the

range of 1 < q6 2. When q ¼ 1 we recover to the original model. By employing the same strategy to one-dimensional

kinematic hardening model as well as to one-dimensional mixed-hardening model, we found that the newly modified

models, besides provide a more smooth transition from elasticity to plasticity, are able to describe strain hardening

effect, the Bauschinger effect, cyclic hardening effect, strain ratcheting behavior and even more complicated cyclic

behavior. Then, we extend the same idea to modify a multi-dimensional mixed-hardening model. Instead of the con-

ventional zero-measure yield surface, the new model allows plasticity to happen in some non-zero-measure yield volume

in stress space, which is the main reason to cause smooth elastoplastic stress–strain behavior; moreover, the original

yield surface has to be viewed mathematically as a limiting surface of the new model. Because the new model shares the

same governing equations as the original model has, it is thermodynamically consistent as the original model is. From

computational aspect, since stress points are no longer confined on the yield surface, the new model is more easily to

numerically implement than the original model, and the conventional numerical design to match the consistency

condition, e.g. the radial return method, is now no more needed for the new model.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Drucker (1988) has classified elastoplastic constitutive models into two types: conventional and un-

conventional. The conventional model is based on the assumption that the interior of yield surface is an

elastic domain, wherein plastic deformation is not permitted no matter what stress changes occur. Con-

versely, the unconventional model under some conditions may allow plasticity to happen inside the yield
surface. In order to differentiate these two situations Hashiguchi (1989) called the plastic state in which a
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stress point lies on the conventional yield surface a ‘‘normal-yield state’’ and the plastic state within the

yield surface a ‘‘subyield state’’.

The most frequently used conventional model is perfectly elastoplastic system (see, e.g., Liu, 2000) which

allows plastic slip taking place at a constant value of applied stress and then leads to the tensile stress–strain
curve being a horizontal line follows an inclined line. This is of course a very crude approximation to the

elastoplastic stress–strain behavior of most metals. To enhance the simulation of experimentally observed

hardening behavior in many metals strain-hardening was then proposed, which asserts that the yield surface

expands with the amount of plastic flow. An alternative simple phenomenological mechanism, kinematic

hardening, provides another means of representing hardening behavior of metals under cyclic loadings.

This basic hardening law is credited to Prager (1956) with further improvements by Ziegler (1959). Then, a

combination of kinematic hardening and isotropic hardening, called mixed-hardening, has been pointed

out by Hodge (1957). For this case the yield surface can expand and translate simultaneously in stress
space, but still remains its original shape. Within this type hardening mechanism, the different degree of

experimentally observed Bauschinger effect can be simulated by suitably adjusting these two hardening

components.

These conventional models have been used extensively in many engineering applications due to their

analytical tractability (see, e.g., Liu, 1997, 2000, 2002). However, they are often too simple to give ac-

ceptable approximation to real systems. For example, Fig. 1 shows the cyclic stress–strain curves of the

perfectly elastoplastic system, of the bilinear elastoplastic system and of the mixed-hardening elastoplastic

system, under the same input of piecewise increasing strain amplitudes. Obviously, all these curves are
‘‘over square’’ near to the elastoplastic transition points, and none of them can meet the basic requirements

for cyclic plasticity models (see, e.g., Drucker and Palgen, 1981; Dafalias, 1984). Indeed, as pointed out by

many researchers, e.g. Hashiguchi (1993), that the conventional model has serious drawbacks as follows: It

is unable to describe the smooth transition from elastic phase to plastic phase, which is observed experi-

mentally for most metals, and instead, an abrupt transition is predicted. It cannot describe the accumu-

lation of plastic deformation such as mechanical ratcheting phenomenon under a constant stress amplitude.

For the conventional theory is far from being able to predict experimental results on real metals,

especially under cyclic loading conditions, some modifications have to be made to improve the conventional
theory. The unconventional elastoplastic constitutive models, which exclude the above-mentioned as-

sumption in the conventional theory, have been studied, and various models have been proposed since

1960s. For example, an extension of the kinematic hardening model so as to describe even a plastic de-

formation proceeding in the transition from elastic phase to the normal-yield phase has been attempted by

Mr�ooz (1967, 1969) and Iwan (1967) independently. Their extended model, subyield surfaces encircled by a

normal-yield surface, has been called a ‘‘multi-surface model’’. Thereafter, based on them, a simplified

model employing a normal-yield surface and only one subyield surface enclosing a purely elastic domain

Fig. 1. The hysteretical loops for (a) perfectly elastoplastic model, (b) bilinear elastoplastic model and (c) mixed-hardening elastoplastic

model, are all over square near to the elastoplastic transition points.
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has been formulated by Dafalias and Popov (1975, 1976), Krieg (1975), Mr�ooz et al. (1979) and Hashiguchi

(1988), which has been called a ‘‘two surface model’’. In the plural surfaces theory, we also mention the

infinite surface model developed by Mr�ooz et al. (1981), and the subloading surface model developed by

Hashiguchi (1989). In terms of mechanical requirements for cyclic plasticity, the condition of continuity in
the large and in the small and the Masing effect, Hashiguchi (1993) has examined those models in detail.

Chaboche and Rousselier (1983) showed equivalence between the nonlinear kinematic hardening rule of

Armstrong and Frederick (1966) and a simple two surface model based on bounding and yield surfaces.

Such similarity study may facilitate us to understand and to further develop material models. A detailed

discussion concerning multi-surface model, two surface model and the nonlinear kinematic hardening

model was given by Chaboche (1986). We just merely and briefly sketch a few progress about cyclic

plasticity models which may be to some extent related to our work in the present paper. For further dis-

cussion concerning the development of cyclic plasticity before 1990 the interested readers are referred to the
paper by Ohno (1990) and the references therein.

In this paper we first concern with one-dimensional models that can be used to describe nonlinear cy-

clically hysteretical stress–strain behavior through a critical modification. Then, we extend the basic idea to

modify a multi-dimensional mixed-hardening model. Instead of zero-measure yield surface for conventional

model, the new model obtained by a critical modification of the conventional model allows plasticity to

happen in a non-zero-measure yield volume in stress space, which makes the new model exhibiting smooth

elastoplastic transition and is able to simulate some cyclic stress–strain behavior. In Drucker�s sense we may

categorize the new models developed here into unconventional type. However, the new models even allow
plasticity to happen inside the yield surface, but they do not need any inner surfaces to delineate the current

stress point in plastic state. More importantly, because the new models add only one additional material

constant of smoothing factor on their formulations, they are simpler in theoretical and also in practical

than other unconventional models.

There have several models that can produce smooth elastoplastic transition, for example, the multi-layer

model (Besseling, 1958), the distributed-element model (Iwan, 1966), the Bouc–Wen model (Wen, 1976), the

Masing model (see, e.g., Chiang, 1999), the multi-back stress model (Chaboche, 1991), and some nonlinear

kinematic hardening models and generalized plasticity models as discussed by Auricchio and Taylor (1995).
However, we approach this issue by utilizing a very different, simple yet effective method to modify the

original non-smooth elastoplastic model to a smooth one. As will be confident, the proposed method makes

the new model revealing drastically different behavior and having largely improved simulation capability

than the original model.

2. Modification of one-dimensional perfectly elastoplastic model

2.1. The original model

The following postulations are usually employed to depict the stress–strain relation for one-dimensional

perfectly elastoplastic model (see, e.g., Hong and Liu, 1997; Liu, 2000):

_ee ¼ _eee þ _eep; ð1Þ

_rr ¼ E _eee; ð2Þ

_kkr ¼ r0
y _ee

p; ð3Þ

jrj6r0
y; ð4Þ
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_kk P 0; ð5Þ

jrj _kk ¼ r0
y
_kk: ð6Þ

The two constants, namely the Young modulus E and the tensile yield stress r0
y, are assumed to be positive.

Here _ee, _eee, _eep and _rr are, respectively, the strain, elastic strain, plastic strain and stress; _kk is a scalar evaluated

by _kkðtÞ ¼
R t
0
j _eepðnÞjdn.

Combining Eqs. (1)–(3), we have

_rr þ E
r0
y

_kkr ¼ E _ee; ð7Þ

which together with the complementary trios (4)–(6) enable the model to possess the elastic–plastic

switching criteria as follows:

_kk ¼ 1

r0
y

r _ee > 0 if jrj ¼ r0
y and r _ee > 0; ð8Þ

_kk ¼ 0 if jrj < r0
y or r _ee6 0: ð9Þ

According to the complementary trios (4)–(6), there are just two phases: (i) _kk > 0 and jrj ¼ r0
y and (ii) _kk ¼ 0

and jrj6 r0
y. From the criteria (8) and (9) it is clear that (i) corresponds to the plastic phase while (ii) to the

elastic phase.

Theorem 1. For the one-dimensional perfectly elastoplastic model (1)–(6) the switch-on strain is given by

eon ¼ eoff þ
r0
ysgnð _eeÞ � roff

E
; ð10Þ

where sgn is the signum function.

Proof. For an admissible initial stress roff :¼ rðtoffÞ specified at a time t ¼ toff ,
1 we first integrate Eq. (2)

from toff to t with its _eee replaced by _ee due to _eep ¼ 0 in Eq. (1), giving

r ¼ roff þ Eðe � eoffÞ; ð11Þ
where eoff :¼ eðtoffÞ. Then, inserting it into the yield condition r2 ¼ ðr0

yÞ
2
generates the following equation

for e:

E2ðe � eoffÞ2 þ 2Eroffðe � eoffÞ þ r2
off � ðr0

yÞ
2 ¼ 0: ð12Þ

Solving this equation for e we thus show that the switch-on strain eon is given by Eq. (10). �

2.2. A critical modification

Now we propose a new model modified from the above perfectly elastoplastic model, which provides a

quite significant improvement in describing stress–strain behavior to avoid some major defects of the

original model. In order to alleviate the non-smoothness of the stress–strain curves for perfectly elasto-

plastic model as shown in Fig. 1(a) we propose, instead of the constant yield stress r0
y, a modified piecewise-

constant yield stress given as follows:

1 toff may be an initial time in the elastic phase or the latest time for the occurrence of unloading.
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rm
y :¼

r0
y þ ðq � 1Þroff sgnð _eeÞ

q
: ð13Þ

The above roff is the stress at the latest unloading point; initially we may let roff ¼ 0. The smoothing factor

q > 1 is a material constant determined by experimental test. When q ¼ 1, rm
y ¼ r0

y and we recover to the

original non-smooth model.
Now we prove the following two important results.

Theorem 2. If 1 < q6 2, the switch-on strain for the newly modified one-dimensional perfectly elastoplastic

model is given by

eon ¼ eoff þ
r0
ysgnð _eeÞ � roff

qE
: ð14Þ

Proof. At first we need q to be in the range of 1 < q6 2; otherwise, for some extremal cases of roff very near

to 	r0
y we may obtain negative rm

y from Eq. (13). For admissible initial stress 2 roff specified at time t ¼ toff ,
substituting the elastic equation (11) into the new yield condition r2 ¼ ðrm

y Þ
2
generates the following

equation for e:

E2ðe � eoffÞ2 þ 2Eroffðe � eoffÞ þ r2
off � ðrm

y Þ
2 ¼ 0: ð15Þ

Substituting Eq. (13) for rm
y into the above equation and solving it for e we obtain the result in Eq. (14). �

The specification of the new rm
y to be a subyield stress is equivalent to shorten the original switching-on

strain given by Eq. (10) to that given by Eq. (14) with a factor q > 1.

Theorem 3. The modified yield stress rm
y satisfies the following inequality

0 < rm
y < r0

y: ð16Þ

Proof. Because of 1 < q6 2 and jroff j < r0
y the above inequality follows from Eq. (13) directly. �

We should note that rm
y cannot be a constant for all time; otherwise, Eq. (15) may has no solution for

some cases. The strategy employed in the new model amounts to modify the _kk in Eq. (7) subjected to the
new switching criteria:

_kk ¼ 1

r0
y

r _ee > 0 if r0
y > jrjP rm

y and r _ee > 0; ð17Þ

_kk ¼ 0 if jrj < rm
y or r _ee6 0: ð18Þ

It admits plasticity occurring in a finite stress interval of rm
y 6 jrj < r0

y. The original yield points jrj ¼ r0
y can

be viewed mathematically as limiting points, and jrjP r0
y is not permitted in the new model. As the original

model is, the new model is thermodynamically consistent since _kk > 0 in the plastic phase and _kk ¼ 0 in the

elastic phase as shown in Eqs. (17) and (18).

2 Instead of jrj6r0
y for the original model, for the new model we call r admissible if jrj < r0

y.
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2.3. Smooth stress–strain curves

From Eqs. (7) and (17) we have

_rr ¼ E _ee 1

 
� r2

ðr0
yÞ

2

!
ð19Þ

in the plastic phase. Because we allow plasticity to happen when r2 lies in the range of ðr0
yÞ

2
> r2 P ðrm

y Þ
2
,

the above right-hand side is not equal to zero, which is different from that for the original model, of which

the above right-hand side is zero because plasticity is permitted only in the zero-measure two points set of

r ¼ 	r0
y. Let us further note four important points: (a) For the modified model we do not care the con-

sistency condition, because yield surface has been replaced by a new concept of yield volume whose measure
is not zero in stress space; however, _kk for the new model is same as that for the original perfectly elasto-

plastic model which is obtained by the consistency condition. (b) From Eq. (19) follows two fixed points

r ¼ r0
y and r ¼ �r0

y. They are the attracting points of the new model dynamics. (c) Hence, for the new

model it is obvious that extensive plastic loading overwhelms and wipes out memory many, if not all, of the

past effect. No matter how many cycles the modeled material has experienced, its stress–strain curve will

approach to one of the two bounding lines, r ¼ 	r0
y, if plastic deformation goes on extensively in one of the

two directions. (d) The new model allows stress control in the range of jrj < r0
y; this is however impossible

for the original perfectly elastoplastic model.
If we view r as a function of e, Eq. (19) can be written as

dr
de

¼ E 1

 
� r2

ðr0
yÞ

2

!
: ð20Þ

Integrating the above equation with some algebraic manipulations gives

rðtÞ
r0
y

¼
½rðtiÞ þ r0

y� exp
2E½eðtÞ�eðtiÞ�

r0y

n o
þ rðtiÞ � r0

y

½rðtiÞ þ r0
y� exp

2E½eðtÞ�eðtiÞ�
r0y

n o
þ r0

y � rðtiÞ
; ð21Þ

where ti can be a switched-on time. In the new model we do allow jrðtiÞj < r0
y but not allow jrðtiÞj ¼ r0

y; for

the former case it is obvious that jrðtÞj < r0
y for all tP ti, but for the latter case it is obvious that jrðtÞj ¼ r0

y

for all tP ti, which thus leads to a plastic plateau and a non-smooth elastoplastic transition. Under

monotonically straining it is obvious that jrðtÞj approaches to r0
y, and hence the points of jrj ¼ r0

y are
limiting points.

In order to get a clear picture about the stress–strain relations for the new model, we apply Eqs. (11) and

(21) to calculate the stresses in elastic phase and in plastic phase, respectively, by letting e to be the control

input, and we use Eq. (14) to determine the switching-on strain. The Young modulus E ¼ 20000 MPa was

taken, and the modified initial yield stress rm
y ¼ r0

y=q ¼ 200 MPa was fixed in all calculations. Fig. 2 dis-

plays the monotonic stress–strain curves for different q�s and r0
y�s as shown in the figure, where we select

the two constants of q and r0
y so as to make the five curves have the same initial yield point ðr; eÞ ¼

ð200 MPa; 0:01Þ. Obviously, stress runs in the range of ðr0
y=q; r

0
yÞ after initially yielding, 3 and each stress–

strain curve tends to its limiting value r0
y for large strain. It can be seen that more larger q leads to more

strain hardening and also more smooth transition from elasticity to plasticity, and when q ¼ 1 we recover

to the relation for the perfectly elastoplastic model.

3 For the new model, the smoothing factor q has a natural mechanical meaning if we view r0
y=q as initial yield stress and r0

y as

limiting strength.
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If we view r2 as a function of k, Eq. (19), after multiplying by r on both sides and inserting Eq. (17) for

r _ee, becomes

dr2

dk
þ 2E

r0
y

r2 ¼ 2Er0
y: ð22Þ

Integrating the above equation gives

r2 ¼ ðrm
y Þ

2 þ ðr0
yÞ

2
h

� ðrm
y Þ

2
i

1

"
� exp

�2Ek
r0
y

 !#
; ð23Þ

where at k ¼ 0 we let r2 ¼ ðrm
y Þ

2
. The above result is quite significant, which says that for the new model in

each plastic phase the modeled material can harden from an initial yield strength rm
y to a saturated strength

r0
y with a strain-hardening rate 2E=r0

y. Very interestingly, the new model possesses a natural hardening

mechanism as specified by Eq. (23), which is different from the standard saturation type hardening law as to

be given in Eq. (59). This is however impossible for the original model, of which the hardening term dis-

appears.

In Fig. 3(a)–(d) we give some cyclic stress–strain curves for different q�s and r0
y�s as listed in Table 1,

under the input of piecewise increasing amplitudes of strain with each strain amplitude being applied five

cycles. They show that the modified model is able to reveal smooth elastoplastic transition, strain hard-

ening, the Bauschinger effect, as well as a little cyclic hardening effect in small strain range. However, for

this simple modified model the hysteretical loops are stabilized rapidly to a single loop within one cycle for

each strain amplitude. In order to simulate cyclic hardening in a more feasible way we need to supplement

mixed-hardening effect into the model as that to be investigated in Section 4. In Fig. 3(e) the time histories

of the modified yield stresses rm
y �s for different q�s are plotted.

About q and rm
y there have at least three important points deserving to note: (a) For smaller q there has

smaller stress range that the material can harden, and such that rm
y varies in a very narrow range. For

Fig. 2. The monotonic stress–strain curves for different smooth factors and yield stresses.
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example, after the first cycle in Fig. 3(e) for the case q ¼ 1:2, rm
y is almost tended to a constant value. But in

the first cycle rm
y as can be seen experiences a large jump from 200 MPa to about 160 MPa, because the

Fig. 3. The hysteretical loops for the modified perfectly elastoplastic model with different smooth factors and yield stresses. The

modification renders the new model having more smooth elastoplastic transition. The last one plot shows the time histories of the

modified yield stresses.

Table 1

Material constants used in Figs. 1, 3, 5, 6

E (MPa) r0
y (MPa) q Eb (MPa) ru

y (MPa) n

20 000 200 1 Fig. 1(a) 2000 Fig. 1(b) 300 5 Fig. 1(c)

20 000 240 1.2 Fig. 3(a) 2000 Fig. 5(a) 340 5 Fig. 6(a)

20 000 300 1.5 Fig. 3(b) 2000 Fig. 5(b) 400 5 Fig. 6(b)

20 000 340 1.7 Fig. 3(c) 2000 Fig. 5(c) 440 5 Fig. 6(c)

20 000 400 2 Fig. 3(d) 2000 Fig. 5(d) 500 5 Fig. 6(d)
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material rapidly hardens in the first cycle, and after that the cyclic hardening almost stops. (b) More larger

q gives more smaller rm
y , and hence more smooth elastoplastic transition. (c) The time histories of rm

y as

shown in Fig. 3(e) tell us that rm
y decreases to certain small value when strain amplitude increases. For

example for the case q ¼ 2, rm
y almost tends to zero value at the last few cycles, which renders stress–strain

curve almost being C1 smooth at the elastoplastic transition points.

In this occasion let us give one comment on the basic mechanical requirement of continuity in the large,

i.e., C1 smooth stress–strain curve, that Hashiguchi (1993) proposed to assess the smoothness of elasto-

plastic constitutive models. This requirement needs the material model responding plastically under a

loading process even starting immediately from a zero stress state. That is, elastic domain is shrinking to a

zero stress point. This is however not true for most metals being loaded from their annealed state. As

remarked by Hashiguchi (1993) only very few models that can meet this stringent requirement. In personal

view, it is a mathematical requirement rather than a mechanical requirement for modeling material be-
havior.

In order to display the strain ratcheting effect that the new model can simulate, we may conversely

employ r as the control input and calculate e by the following equation

eðtÞ ¼ eðtiÞ þ
r0
y

2E
ln
½r0

y þ rðtÞ�½r0
y � rðtiÞ�

½r0
y � rðtÞ�½r0

y þ rðtiÞ�
ð24Þ

in the plastic phase, and by Eq. (11) in the elastic phase. The switching-on stress is determined by

ron ¼
r0
ysgnð _rrÞ

q
: ð25Þ

In Fig. 4(a)–(h) with stress being input we show some cyclic stress–strain curves for different initial pre-

stresses rðtiÞ�s but with r0
y ¼ 400 MPa and q ¼ 2 being kept constant for all cases. They show that the

modified model is able to reveal ratcheting behavior, and we can see that more larger mean value of stress

leads to more larger strain ratcheting, and that zero mean stress induces no strain ratcheting. These results

are at least qualitatively consistent with the experimental observations for most metals.

3. Modification of one-dimensional bilinear elastoplastic model

Although the above modified model can describe a little Bauschinger effect, in order to enhance the

simulation capability it needs the model able to describe kinematic hardening more and more. In many

metals subjected to cyclic loading, it is experimentally observed that the center of yield surface experiences a

motion in the direction of plastic flow. This hardening behavior is known as the Bauschinger effect. Dafalias

(1984) has experimentally observed that the reverse yielding initiates before even the tensile stress changes

to compressive for grade 60 steel.

A simple phenomenological description that captures the Bauschinger effect is constructed by intro-
ducing an additional internal variable called back stress in the formulation, which defines the location of

the center of the yield surface. Then, Eqs. (1)–(6) are extended to the following one-dimensional bilinear

elastoplastic model (see, e.g., Liu, 1997, 2000; Hong and Liu, 1999):

_ee ¼ _eee þ _eep; ð26Þ

r ¼ ra þ rb; ð27Þ

_rr ¼ E _eee; ð28Þ
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_kkra ¼ r0
y _ee

p; ð29Þ

_rrb ¼ Eb _ee
p; ð30Þ

jraj6 r0
y; ð31Þ

_kk P 0; ð32Þ

jraj _kk ¼ r0
y
_kk: ð33Þ

Fig. 4. Under constant amplitude stress control the strain ratcheting behavior for the modified perfectly elastoplastic model is shown

for different mean stresses. More larger mean stress renders more larger strain ratcheting.
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From Eqs. (26)–(28), (30) it follows that

1

E
_rr þ 1

Eb

ð _rr � _rraÞ ¼ _ee; ð34Þ

1

E
ð _rra þ _rrbÞ þ 1

Eb

_rrb ¼ _ee; ð35Þ

_rra þ Eb _ee
p ¼ Eð _ee � _eepÞ: ð36Þ

By integrating the above three equations from ti to t we immediately obtain

rðtÞ ¼ rðtiÞ þ b½raðtÞ � raðtiÞ� þ bEb½eðtÞ � eðtiÞ�; ð37Þ

rbðtÞ ¼ rbðtiÞ þ a½raðtiÞ � raðtÞ� þ bEb½eðtÞ � eðtiÞ�; ð38Þ

epðtÞ ¼ epðtiÞ þ
1

E þ Eb

½raðtiÞ � raðtÞ� þ b½eðtÞ � eðtiÞ�; ð39Þ

where the parameter b is defined by

b :¼ E
E þ Eb

ð40Þ

and

a :¼ 1� b ¼ Eb

E þ Eb

ð41Þ

is the modulus ratio, because aE ¼ bEb is the post-yield modulus.

Formulae (37)–(39) indicate that stress, back stress and plastic strain are linear functions of strain, active

stress and some related initial values epðtiÞ, eðtiÞ, raðtiÞ, rbðtiÞ and rðtiÞ, the latter three of which are however
not linearly independent, since they are related by rðtiÞ ¼ raðtiÞ þ rbðtiÞ. Hence, if we know raðtÞ, the other
three quantities rðtÞ, rbðtÞ and epðtÞ can be calculated immediately.

Inserting the flow rule (29) for _eep into Eq. (36) we find that the active stress is governed by

_rra þ E þ Eb

r0
y

_kkra ¼ E _ee; ð42Þ

where _kk is subjected to the following switching criteria:

_kk ¼ b
r0
y

ra _ee > 0 if r0
y > jrajP rm

y and ra _ee > 0; ð43Þ

_kk ¼ 0 if jraj < rm
y or ra _ee6 0: ð44Þ

The above modified yield stress, analogous to the one in Eq. (13), is now given as follows:

rm
y :¼

r0
y þ ðq � 1Þra

off sgnð _eeÞ
q

; ð45Þ

where ra
off is the active stress at the latest unloading point.
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Similarly, we can prove the following result.

Theorem 4. If 1 < q6 2, the switch-on strain for the newly modified one-dimensional bilinear elastoplastic

model is given by

eon ¼ eoff þ
r0
ysgnð _eeÞ � ra

off

qE
: ð46Þ

From Eqs. (42) and (43) we obtain

dra

de
¼ E 1

 
� ðraÞ2

ðr0
yÞ

2

!
: ð47Þ

Integrating the above equation gives

raðtÞ
r0
y

¼
½raðtiÞ þ r0

y� exp
2E½eðtÞ�eðtiÞ�

r0y

n o
þ raðtiÞ � r0

y

½raðtiÞ þ r0
y� exp

2E½eðtÞ�eðtiÞ�
r0y

n o
þ r0

y � raðtiÞ
; ð48Þ

where ti can be chosen to be the switched-on time. In the new model we allow jraðtiÞj < r0
y and not allow

jraðtiÞj ¼ r0
y; for the former case it is obvious that jraðtÞj < r0

y for all tP ti, and for the latter case it is

obvious that jraðtÞj ¼ r0
y for all tP ti, which thus leads to a non-smooth elastoplastic transition. Under

monotonically straining it is obvious that jraðtÞj approaches to r0
y, and hence the points of jraj ¼ r0

y are
limiting points of ra.

Now, we apply Eqs. (48) and (37)–(39) to calculate the responses in plastic phase by letting e to be the

control input, and use Eq. (46) to determine the switching-on strain. In Fig. 5(a)–(d) we give some cyclic

stress–strain curves for different q�s and r0
y�s and fixed Eb as listed in Table 1. They show that the modified

model is able to reveal smooth elastoplastic transition, strain hardening and strong Bauschinger effect,

which shows that reverse yielding initiating before even the tensile stress changes to compressive. The

hysteretical loops are stabilized very soon within one cycle for each strain amplitude. However, the ex-

perimental observations for most metals do not support this type behavior. Therefore, we need to consider
a more reasonable model of mixed-hardening and its modification as follows.

4. Modification of one-dimensional mixed-hardening elastoplastic model

The third model that we attempt to modify is one-dimensional mixed-hardening elastoplastic model,

which allows the yield surface to expand and to translate simultaneously in stress space, and is obtained

from Eqs. (26)–(33) by letting the yield stress ry depend on k, that is, ry ¼ ryðkÞ.
With this in mind, from Eqs. (26)–(30) it follows that

_rra þ E þ Eb

ry

_kkra ¼ E _ee: ð49Þ

The product of ra with the above equation is

ra _rra þ E þ Eb

ry

_kkðraÞ2 ¼ Era _ee; ð50Þ
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which, due to ðraÞ2 ¼ r2
y at yielding point and ry ¼ ryðkÞ, furnishes the following switching criteria:

_kk ¼ E
ðE þ Eb þ r0

yÞry

ra _ee > 0 if jraj ¼ ry and ra _ee > 0; ð51Þ

_kk ¼ 0 if jraj < ry or ra _ee6 0: ð52Þ
In above r0

y denotes the differentiation of ry ¼ ryðkÞ with respect to k.
Eq. (49) together with the switching criteria (51) and (52) are the governing equations for the conven-

tional one-dimensional mixed-hardening elastoplastic model. Now we subject _kk to the new switching cri-

teria:

_kk ¼ E
ðE þ Eb þ r0

yÞry

ra _ee > 0 if ry > jrajP rm
y and ra _ee > 0; ð53Þ

_kk ¼ 0 if jraj < rm
y or ra _ee6 0; ð54Þ

where

rm
y :¼ ryðkoffÞ þ ðq � 1Þra

off sgnð _eeÞ
q

ð55Þ

and koff and ra
off are, respectively, the values of k and ra at the latest unloading point.

Eq. (49) together with the new switching criteria (53) and (54) are the governing equations for the
modified one-dimensional mixed-hardening elastoplastic model, which includes a smoothing factor in the

formulation. Substituting Eq. (53) for _kk into Eq. (49) gives a nonlinear equation for ra,

Fig. 5. The hysteretical loops for the modified bilinear elastoplastic model with different smooth factors and yield stresses. The

modification renders the new model having more smooth elastoplastic transition.
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dra

de
¼ E 1

 
� ðE þ EbÞðraÞ2

ðE þ Eb þ r0
yÞr2

y

!
: ð56Þ

However, because of the dependence of ry on k, the above equation alone insuffices to determine ra, which

must be supplemented with Eq. (53) of the following form:

dk
de

¼ E
ðE þ Eb þ r0

yÞry

ra: ð57Þ

Here we view strain as input, and the strain to switch-on plasticity is given below.

Theorem 5. If 1 < q6 2, the switch-on strain for the newly modified one-dimensional mixed-hardening elas-

toplastic model is given by

eon ¼ eoff þ
ryðkoffÞsgnð _eeÞ � ra

off

qE
: ð58Þ

Unlike to Eq. (20) for modified one-dimensional perfectly elastoplastic model, and Eq. (47) for modified

one-dimensional bilinear elastoplastic model, Eq. (56) cannot be integrated explicitly with a closed-form

solution, because ðraÞ2 is not equal to r2
y for the modified one-dimensional mixed-hardening elastoplastic

model and because the material function ry depends on k. This is also true for the linear isotropic hardening

case, i.e., r0
y ¼constant. Eqs. (56) and (57) are more complicated than the corresponding equations for the

original model, which may be solved exactly for the linear hardening case because of ðraÞ2 ¼ r2
y. The

coupled equations (56) and (57) are then numerically integrated by the group-preserving scheme developed

by Liu (2001), and at the same time stress, back stress and plastic strain are calculated, respectively, by Eqs.

(37)–(39). In Fig. 6(a)–(d) we give some cyclic stress–strain curves for fixed n and different r0
y�s and ru

y�s
within the following isotropic hardening function

ryðkÞ ¼ r0
y þ ðru

y � r0
yÞ½1� expð�nkÞ�; ð59Þ

where r0
y and ru

y are, respectively, the initial yield stress and the ultimate yield stress, and n is the strain-

hardening rate. The material constants used are listed in Table 1. Examining the responses as shown in Fig.

6(a)–(d) for symmetric cyclic loading under piecewise increasing strain amplitudes reveals again that the
modified model can smooth stress–strain curves, and strain hardening, cyclic hardening, as well as the

Bauschinger effect are evident. For each strain amplitude the peak stress increases with the number of cycles

stabilizing at a level which increases with the subsequent strain amplitude for the next set of cycling. This

indicates an increase of the elastic region due to isotropic hardening. In Fig. 6(e) the time histories of the

modified yield stresses rm
y �s for different q�s are plotted. More larger q gives more smaller rm

y , which explains

the reason that more larger q gives more smooth elastoplastic transition. However, for the case q ¼ 1:2,
which is not larger enough to depress the value of rm

y , the cyclic stress–strain curve as shown in Fig. 6(a) is

not so smooth as that for the other three cases.

5. Multi-dimensional mixed-hardening elastoplastic model and its modification

In this section we attempt to extend the above results to the multi-dimensional models. Because the

perfectly elastoplastic model and the bilinear elastoplastic model are both special cases of the mixed-

hardening elastoplastic model, we skip directly to the multi-dimensional mixed-hardening elastoplastic
model, which can be re-formulated as the following postulations (see, e.g., Hong and Liu, 1993; Caddemi,

1994; Auricchio and Beir~aao da Veiga, 2003):
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_ee ¼ _eee þ _eep; ð60Þ

s ¼ sa þ sb; ð61Þ

_ss ¼ 2G _eee; ð62Þ

_kksa ¼ 2sy _ee
p; ð63Þ

_ssb ¼ 2k0 _eep; ð64Þ

ksak6
ffiffiffi
2

p
sy; ð65Þ

Fig. 6. The hysteretical loops for the modified mixed-hardening elastoplastic model with different q�s, r0
y �s and ru

y �s. The modification

renders the new model having more smooth elastoplastic transition. The last one plot shows the time histories of the modified yield

stresses.

C.-S. Liu / International Journal of Solids and Structures 40 (2003) 2121–2145 2135



_kk P 0; ð66Þ

ksak _kk ¼
ffiffiffi
2

p
sy _kk: ð67Þ

Here the norm of a tensor is defined as ksak :¼ ffiffiffiffiffiffiffiffiffiffiffi
sa 
 sa

p
and a dot between two same order tensors denotes

their Euclidean inner product.

In the above e, ee, ep, s, sa and sb are, respectively, the deviatoric tensors of strain, elastic strain, plastic

strain, stress, active stress and back stress, all symmetric and traceless, whereas k is a scalar. It is also

postulated that with the above differential model there is a time instant designated as t ¼ t0, called the zero-

value time, before and at which the material is in the zero-value state in the sense that the relevant values e,

ee, ep, s, sa, sb and k are all zero. Here, the shear modulus G > 0 is assumed to be a material constant, and
the shear yield strength sy > 0 and the shear kinematic modulus k0 are functions of the equivalent shear

plastic strain k given by

kðtÞ ¼
Z t

t0

ffiffiffi
2

p
k _eepðnÞkdn: ð68Þ

The material is further assumed to be weakly stable, Hong and Liu (1993):

s0y þ k0 þ G > 0: ð69Þ

Here a prime attached to a material function denotes the derivative with respect to its argument, for ex-
ample, s0yðkÞ :¼ dsyðkÞ=dk.

5.1. Switch of plastic irreversibility

From Eqs. (60)–(64) it follows that

_ssa þ
k0 þ G

sy
_kksa ¼ 2G _ee: ð70Þ

Taking the inner product of Eq. (70) with sa, we get

Gsa 
 _ee ¼ ðs0y þ k0 þ GÞsy _kk if ksak ¼
ffiffiffi
2

p
sy; ð71Þ

which, since G > 0, sy > 0 and s0y þ k0 þ G > 0, gives

if ksak ¼
ffiffiffi
2

p
sy then fsa 
 _ee > 0 () _kk > 0g: ð72Þ

Thus,

fksak ¼
ffiffiffi
2

p
sy and sa 
 _ee > 0g ) _kk > 0: ð73Þ

On the other hand, if _kk > 0, Eq. (67) assures ksak ¼
ffiffiffi
2

p
sy, which together with Eq. (72) asserts that

_kk > 0 ) fksak ¼
ffiffiffi
2

p
sy and sa 
 _ee > 0g: ð74Þ

Therefore, from Eqs. (73) and (74) we conclude that the yield condition ksak ¼
ffiffiffi
2

p
sy and the straining

condition sa 
 _ee > 0 are sufficient and necessary for plastic irreversibility _kk > 0. Considering this and the

inequality (66), we thus reveal the following criteria of plastic irreversibility:

_kk ¼
Gsa
 _ee

ðs0yþk0þGÞsy > 0 if ksak ¼
ffiffiffi
2

p
sy and sa 
 _ee > 0;

0 if ksak <
ffiffiffi
2

p
sy or sa 
 _ee6 0:

(
ð75Þ
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In the ON phase of the switch, _kk > 0, the mechanism of plastic irreversibility is working and the material

exhibits elastoplastic behavior, while in the OFF phase of the switch, _kk ¼ 0, the material behavior is re-

versible and elastic. According to the complementary trios (65)–(67), there are just two phases: (i) _kk > 0 and

ksak ¼
ffiffiffi
2

p
sy, and (ii) _kk ¼ 0 and ksak6

ffiffiffi
2

p
sy. From the switch (75) it is clear that (i) corresponds to

the plastic phase (or the on phase or the elastoplastic phase) while (ii) to the elastic phase (or the off

phase).

5.2. Constant strain rate

Now we consider a rectilinear strain path with

_ee ¼ c; ð76Þ
where c is a given second-order constant deviatoric tensor.

Theorem 6. For the model (60)–(67) subjected to the strain path (76), the switch-on time is given by

ton ¼ toff þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
� B

2A
; ð77Þ

where

A :¼ 4G2kck2; B :¼ 4GsaðtoffÞ 
 c; C :¼ ksaðtoffÞk2 � 2s2yðkoffÞ ð78Þ

and koff denotes the value of k at the latest unloading time toff . Then, from the time moment ton on we have

_kkðtÞ > 0 8 t > ton: ð79Þ

Proof. For the given strain path (76) and the admissible initial active stress saðtoffÞ specified at time t ¼ toff ,
we first integrate Eq. (70) with _kk ¼ 0 from toff to t, giving

saðtÞ ¼ saðtoffÞ þ 2Gðt � toffÞc: ð80Þ
Then, substituting it into the yield condition ksaðtÞk2 ¼ 2s2yðkoffÞ generates the following equation for t:

Aðt � toffÞ2 þ Bðt � toffÞ þ C ¼ 0: ð81Þ
Because of A > 0 and C6 0, we get B2 � 4ACP 0 and hence tP toff . Taking the inner product of Eq. (80)

with 4Gðt � toffÞc gives

4Gðt � toffÞsaðtÞ 
 c ¼ 4GsaðtoffÞ 
 cðt � toffÞ þ 8G2kck2ðt � toffÞ2 ¼ Bðt � toffÞ þ 2Aðt � toffÞ2

¼ Aðt � toffÞ2 � C;

where Eqs. (78) and (81) were used. We consider only the case of t > toff , which together with A > 0 and

C6 0 leads to

saðtÞ 
 c > 0: ð82Þ
From Eqs. (81) and (82) and the switch-on criterion (75) we thus conclude that the switch-on time ton is
given by Eq. (77), and _kkðtÞ > 0 at this time moment t ¼ ton.

In terms of the integrating factor

Y ðkÞ :¼ exp

Z k

0

k0ðk1Þ þ Gðk1Þ
syðk1Þ

dk1


 �
; ð83Þ
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the integral of Eq. (70) can be obtained as follows:

saðtÞ ¼
1

Y ðkðtÞÞ Y ðkðtiÞÞsaðtiÞ



þ
Z t

ti

2GY ðkðnÞÞ _eeðnÞdn

�
: ð84Þ

Substitution of the above equation for sa into Eq. (71) and rearrangement yield

_ZZðtÞ ¼ Y ðkðtiÞÞsaðtiÞ 
 _eeðtÞ þ
Z t

ti

2GY ðkðnÞÞ _eeðtÞ 
 _eeðnÞdn; ð85Þ

where

ZðkÞ :¼
Z k

0

syðk1ÞY ðk1Þ½s0yðk1Þ þ k0ðk1Þ þ G�
G

dk1 ð86Þ

is a newly defined irreversibility parameter. Under the strain path (76), from Eq. (85) with its ti replaced by

ton we have

_ZZðtÞ ¼ Y ðkðtonÞÞsaðtonÞ 
 cþ 2Gkck2
Z t

ton

Y ðkðnÞÞdn: ð87Þ

Since Y > 0 from Eq. (83) and saðtonÞ 
 c > 0 as just proved in Eq. (82), the inequality _ZZðtÞ 8 t > ton is

verified. The inequality _kkðtÞ > 0 8 t > ton follows directly by Eqs. (86) and (69). �

The switching criteria in Eq. (75) and the inequality (79) indicate that for a rectilinear strain path once

yielding occurs the model switches-on to the plastic phase and responds always plastically in the subsequent

time up to the termination of the strain path.

Before employing the same idea to modify the above conventional mixed-hardening model, we use the
group-preserving scheme developed by Liu (2003) to calculate the model responses under a piecewise

proportional two-dimensional strain path as shown in Fig. 7(a). The material is linear hardening having

sy ¼ sy0 þ s0yk with sy0 ¼ 200 MPa and s0y ¼ 100 MPa, and also with G ¼ 20000 MPa and k0 ¼ 500 MPa.

Fig. 7 illustrates the response to an input of a cyclic two-triangular path in two dimensions strain space

ðe11; e12Þ, the first cycle of which consists of six pieces from point 0 to point 6. The consecutive cycle repeats

in the strain space the locus of the first cycle. The results shown with dashed lines include the stress path in

Fig. 7(b), and hysteresis loops in Fig. 7(c) and (d). The response graph of the stress path in Fig. 7(b) as can

be seen is very different from the input strain path in Fig. 7(a). One main feature is that the strain path is
closed, but the corresponding stress response has an open path. The other feature is that the strain path is

composed of straight lines, but the corresponding stress response has straight-line paths in the off phase but

destorted arc paths in the on phase due to plasticity and the accompanied hardening effect. As shown in

Fig. 7(c) and (d) the original model gives non-smooth stress–strain curves.

5.3. A new model modified from the multi-dimensional mixed-hardening model

In order to overcome the above shortcoming of non-smoothness of the stress–strain curves and adapt the

mixed-hardening model to a new one which can simulate cyclic behavior we propose, instead of the con-

tinuous shear yield strength function sy, a modified piecewise-constant shear yield strength given as follows:

2ðsmy Þ
2
:¼ ksaðtoffÞk2 �

q2B2 � ½ðq � 1ÞBþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
�2

4q2A
; ð88Þ

where A, B and C were defined in Eq. (78). The above toff is the latest unloading (switching-off) time; we may

let toff ¼ 0 initially. When q ¼ 1, smy ¼ syðkoffÞ, and we recover to the original non-smooth model. Hereafter

we call the model with the above modification the new model, and which without considering the above
modification the original model. Now we prove the following important result.
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Theorem 7. If 1 < q6 2, then under the strain path (76) the switch-on time of the new model is given by

ton ¼ toff þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
� B

2qA
ð89Þ

and then

_kkðtÞ > 0 8 t > ton: ð90Þ

Proof. For the strain path given by Eq. (76) and the admissible initial active stress saðtoffÞ specified at time

t ¼ toff ,
4 substituting the elastic constitutive equation (80) into the new yield condition ksaðtÞk2 ¼ 2ðsmy Þ

2

generates the following equation for t:

Aðt � toffÞ2 þ Bðt � toffÞ þ ksaðtoffÞk2 � 2ðsmy Þ
2 ¼ 0: ð91Þ

4 The admissible stress for the new model is ksak <
ffiffiffi
2

p
sy. If ksak ¼

ffiffiffi
2

p
sy at a time moment then under the loading condition the

active stress point will always lie on the yield surface. Mathematically speaking, the yield surface is an invariant surface for the new

model, and sometimes we call it a limiting surface because it is an attracting surface of all active stress orbits under proportional

loading conditions.

Fig. 7. The responses to an input of a cyclic two-triangular strain path in (a), and displaying the results, respectively, for the original

model and for new model in (b) the corresponding stress paths, in (c) the cyclic axial stress–axial strain curves and in (d) the cyclic shear

stress–shear strain curves.
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The inner product of Eq. (80) with 4Gðt � toffÞc gives

4Gðt � toffÞsaðtÞ 
 c ¼ 4GsaðtoffÞ 
 cðt � toffÞ þ 8G2kck2ðt � toffÞ2 ¼ Bðt � toffÞ þ 2Aðt � toffÞ2

¼ Aðt � toffÞ2 �
q2B2 � ½ðq � 1ÞBþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
�2

4q2A
; ð92Þ

where Eqs. (91), (78) and (88) were used. Solving Eq. (91) for t and using Eq. (88) again we obtain

t ¼ toff þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
� B

2qA
: ð93Þ

Substituting it into the right-hand side of Eq. (92) gives

4Gðt � toffÞsaðtÞ 
 c ¼
½ðq � 1ÞBþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
�2 þ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
� B�2 � q2B2

4q2A
: ð94Þ

To proceed we consider two cases: q ¼ 2 and 1 < q < 2. If q ¼ 2, Eq. (94) reduces to

8Gðt � toffÞsaðtÞ 
 c ¼ �C: ð95Þ
It is obvious that t ¼ toff implies C ¼ 0. So we consider the case of t > toff and C < 0, and hence

saðtÞ 
 c > 0: ð96Þ
The above inequality together with Eq. (93) asserts that such t is a switch-on time, and thus Eq. (89) holds.

For the case 1 < q < 2, in order to prove the above inequality (96) we need further to consider two

possible conditions, namely BP 0 and B < 0. From Eq. (94) it follows that

4Gðt � toffÞsaðtÞ 
 c ¼
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
þ ðq � 1ÞB�½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
� B�

2q2A
: ð97Þ

Under the condition BP 0, Eq. (96) follows directly because of q > 1, A > 0, C < 0, and henceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
� B > 0. Now, we turn to the condition B < 0 which, due to 1 < q < 2, leads toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � 4AC
p

þ ðq � 1ÞB >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
þ B

and hence

4Gðt � toffÞsaðtÞ 
 c >
�2C
q2

ð98Þ

by Eq. (97). So, under the conditions of t > toff and C < 0, Eq. (96) follows directly. From Eqs. (93) and

(96) we thus conclude that the switch-on time ton of the new model is given by Eq. (89). The proof of
inequality (90) is the same as that given in the proof of Theorem 6. �

The above results show that for a rectilinear strain path once yielding occurs the new model responds

always in the plastic phase up to the termination of the input. The specification of smy to be the new shear

yield strength is equivalent to shorten the original switching-on time given by Eq. (77) to that given by Eq.

(89) with a factor q > 1. The smoothing factor q cannot be larger than two because it may violate the

inequality (90) under some initial conditions. Furthermore, we can prove the following result.

Theorem 8. The modified shear yield strength smy in the new model satisfies the following inequality

smy < syðkoffÞ: ð99Þ
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Proof. Upon letting t ¼ ton in Eqs. (81) and (91), and noting that the ton � toff in the second equation is the

ton � toff in the first equation dividing by q when comparing Eq. (77) with Eq. (89), we obtain

Aðton � toffÞ2 þ Bðton � toffÞ þ ksaðtoffÞk2 � 2s2yðkoffÞ ¼ 0; ð100Þ

A
q2

ðton � toffÞ2 þ
B
q
ðton � toffÞ þ ksaðtoffÞk2 � 2ðsmy Þ

2 ¼ 0: ð101Þ

From Eqs. (65) and (100) it follows that

Aðton � toffÞ2 þ Bðton � toffÞP 0: ð102Þ

Then, subtracting Eq. (101) from Eq. (100) we get

2s2yðkoffÞ � 2ðsmy Þ
2 ¼ Aðton � toffÞ2 1

�
� 1

q2

�
þ Bðton � toffÞ 1

�
� 1

q

�
: ð103Þ

Because of q > 1 and A > 0, from the above equation it follows that

2s2yðkoffÞ � 2ðsmy Þ
2
> 1

�
� 1

q

�
½Aðton � toffÞ2 þ Bðton � toffÞ�: ð104Þ

Due to q > 1 and Eq. (102) we prove inequality (99). �

5.4. Characterization of new model behavior

The method employed in the new model amounts to modify the _kk in Eq. (70) by subjecting to the new

switching criteria:

_kk ¼ Gsa 
 _ee
ðs0y þ k0 þ GÞsy

> 0 if
ffiffiffi
2

p
syðkoffÞ > ksakP

ffiffiffi
2

p
smy and sa 
 _ee > 0; ð105Þ

_kk ¼ 0 if ksak <
ffiffiffi
2

p
smy or sa 
 _ee6 0: ð106Þ

In the ON phase of the switch, _kk > 0, the mechanism of plastic irreversibility is working and the material
modeled by the new model exhibits elastoplastic behavior, while in the OFF phase of the switch, _kk ¼ 0, the

material behavior is reversible and elastic. We note again that as the original model is, the new model is

thermodynamically consistent since _kk > 0 in the plastic phase and _kk ¼ 0 in the elastic phase.

Inserting the two _kk�s in Eqs. (105) and (106) into Eq. (70) the governing equations for active stress of the

new model are found to be

_ssa ¼ 2G _ee� Gðk0 þ GÞsa 
 _ee
s2yðs0y þ k0 þ GÞ sa if

ffiffiffi
2

p
syðkoffÞ > ksakP

ffiffiffi
2

p
smy and sa 
 _ee > 0; ð107Þ

_ssa ¼ 2G _ee if ksak <
ffiffiffi
2

p
smy or sa 
 _ee6 0: ð108Þ

In the new model we really depress the original shear yield stress level sy to a lower level smy , and when

ksak ¼
ffiffiffi
2

p
smy we call the material yielding. 5 It allows plasticity occurring in a finite stress volume inffiffiffi

2
p

sy > ksakP
ffiffiffi
2

p
smy as schematically shown in Fig. 8. Mathematically speaking, e.g. Hale (1969), a set F

5 The yielding defined here is different from that for the original model. For distinct we may call it subyielding as that suggested by

Hashiguchi (1989).
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in R3�3 � R is said to be an invariant set of Eqs. (107) and (105) if, for any point p 2 F the solution curve

through p belongs to F for t in ð�1;1Þ. Let us define the set by F :¼ fðsa; kÞjksak �
ffiffiffi
2

p
syðkÞ ¼ 0g.

Taking the time derivative of ksak �
ffiffiffi
2

p
syðkÞ and feeding Eq. (107) for _ssa and Eq. (105) for _kk it is obvious

that _FF ¼ 0. It means that the original yield surface ksak �
ffiffiffi
2

p
sy ¼ 0 is an invariant surface for the new

model. However, we sometimes call it a limiting surface because it is an attracting set of all orbits of ðsa; kÞ
under proportional loading conditions. 6

Because the original model and the new model share the same governing equation (70) and the same _kk,
Eq. (87) with its ton�s replaced by the new ton defined in Eq. (89) is still applicable to the new model when it

subjects to the strain path (76). Especially, for the new model the active stress formula is also given by Eq.

(84); however, the initial active stress saðtonÞ does not necessarily locate on the yield surface. Indeed, for the
new model we only allow ksaðtonÞk ¼

ffiffiffi
2

p
smy <

ffiffiffi
2

p
syðkoffÞ.

In cyclic plasticity theory, various phenomena of material behavior have been characterized in order to

facilitate our description of stress–strain curves under different loading conditions. A theoretical model is

performing well if it is able to reproduce all these phenomena of cyclic plasticity. According to the new

models we have demonstrated some observed phenomena and effects through one-dimensional illustrative

calculation examples. Now we calculate the responses of the above modified multi-dimensional mixed-

hardening model under the input given in Fig. 7(a) again. The smoothing factor used in this calculation is

q ¼ 2. The results shown with solid lines include the stress path in Fig. 7(b), and hysteresis loops in Fig. 7(c)
and (d). As shown the new model gives smooth stress–strain curves.

For the general strain path we need to calculate the switching-on time in order to provide a similar

method to smooth the model responses. Substituting the elastic equation

saðtÞ ¼ saðtoffÞ þ 2G½eðtÞ � eðtoffÞ� ð109Þ

into the yield condition ksaðtÞk2 ¼ 2s2yðkoffÞ generates usually a nonlinear equation for t as follows:

ksaðtoffÞk2 þ 4GsaðtoffÞ 
 ½eðtÞ � eðtoffÞ� þ 4G2keðtÞ � eðtoffÞk2 � 2s2yðkoffÞ ¼ 0: ð110Þ

Fig. 8. Allowable active stress regions for (a) original mixed-hardening elastoplastic model and (b) newly modified mixed-hardening

elastoplastic model.

6 The limiting surface was understood here from a mathematical sense as just explored. However, in plural surfaces theory of

unconventional type they may be bestowed some different or same names, such as bounding surface (Dafalias and Popov, 1975),

limiting surface (Krieg, 1975), normal-yield surface (Hashiguchi, 1989), etc. Moreover, they may be setting from a geometric sense

rather than from a mathematical sense.
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Solve this equation numerically and denote the solution by toon. Then, we replace it by a new switching-on
time

ton ¼ toff þ
toon � toff

q
: ð111Þ

After this time the new model is in the plastic phase, and the numerical scheme 7 is used to calculate the

response until an unloading occurs. The modified shear yield stress can be obtained by inserting the ton in
Eq. (111) into Eq. (110) to replace their t�s and replacing s2yðkoffÞ by ðsmy Þ

2
, i.e.,

2ðsmy Þ
2 ¼ ksaðtoffÞk2 þ 4GsaðtoffÞ 
 ½eðtonÞ � eðtoffÞ� þ 4G2keðtonÞ � eðtoffÞk2: ð112Þ

This equation is however an implicit form for smy , and not likes the one in Eq. (88) for rectilinear strain path.

We should note that the modified shear yield stress is path dependent.

Below we give a numerical example for the new model under a non-proportional two-dimensional strain

path given by e11 ¼ e0 cosð2pt=100Þ and e12 ¼ e21 ¼ e0 sinð2pt=100Þ with e0 ¼ 0:008, and the other com-

ponents being zero. The corresponding hysteretical loops and stress path are shown in Fig. 9 (a), (b) and (c),

respectively. It can be seen that the new model gives a quite smooth stress path than that given by the

original model.

7 Because for the new model stress points are not confined on the yield surface, any effective numerical scheme for ODEs, e.g. the

Runge–Kutta method, can be used to calculate the responses through integrating Eqs. (105) and (107) in the plastic phase. However,

for the original model we have to require the numerical scheme to match the consistency condition, e.g. the radial return method, such

that the stress points are guaranteed to locate on the yield surface.

Fig. 9. The responses to a non-proportional circular strain path are displaying, respectively, for the original model and for new model

in (a) the cyclic axial stress–axial strain curves, in (b) the cyclic shear stress–shear strain curves and in (c) the corresponding stress paths.
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6. Conclusions

In this paper we have proposed simple but critical modifications of the one-dimensional perfectly elas-

toplastic model, of the one-dimensional bilinear elastoplastic model as well as of the one-dimensional
mixed-hardening elastoplastic model, by merely including a smooth factor q, which is proved to be

1 < q6 2. When q ¼ 1 the original models are recovered. The main idea is to replace the yield surface by a

new concept of yield volume through the specification of a piecewise constant yield stress. Hence, plasticity

is allowed to happen in a non zero-measure domain in stress space. In doing so, we have a degree of

freedom to adjust the smoothness of stress–strain curve. Numerical tests were conducted by subjecting the

modified models to monotonic loadings and cyclic loadings. The major phenomenological cyclic behavior

of metals can be simulated, which include strain hardening, cyclic hardening, the Bauschinger effect, as well

as strain ratcheting. Comparing the stress–strain curves obtained from the original model and from the new
model confirms that the proposed modification not only makes a significant improvement of the qualitative

behavior but also increases the model simulation capability. Finally, we extended the modification to the

multi-dimensional mixed-hardening elastoplastic model, and demonstrated that the original yield surface

has to be viewed mathematically as a limiting surface of the new model. For computing the new model has

the advantage that it need not to match the consistency condition and is more easily to numerically im-

plement than the original model, since stress points are not confined on the yield surface, and hence the

conventional numerical design to match the consistency condition is now no more needed.
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